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RESUMO 

Frequentemente desejamos conseguir olhar além do simples significado das 

palavras; o que a pessoa realmente quer dizer, o que ela esta sentindo e quão 

verdadeira está sendo? Expressões faciais universais para descrever emoções já 

foram identificadas (EKMAN, MATSUMOTO e FRIESSEN, 1982);(EKMAN, 

FRIESEN e HAGER, 2002) (incluindo – raiva, satisfação, nojo, medo, tristeza, 

surpresa e alegria – e podem de forma objetiva e confiável ser separadas umas das 

outras. Este trabalho tem como objetivo criar um programa completamente 

automatizado que analise os “action unit‟s” (AU‟s) faciais, baseados nos FACS de 

Paul Eckman, e determine qual a emoção que a pessoa em questão está sentindo e 

o grau de certeza dessa análise. Já existem muitos programas de detecção de 

emoção facial, no entanto todos se baseiam na comparação de estados emocionais 

macro presentes em fotos ou filmes. Sabendo que essas emoções prototípicas 

ocorrem com pouca frequência, preferimos estudar a comunicação presente  na 

mudança de poucas e discretas características faciais. O programa deve analisar os 

AU‟s descritos por características faciais permanentes (boca, sobrancelha) e 

transientes (rugas, sulcos) capturadas em fotos frontais que são então comparadas 

ao estado neutro. Um total de 21 AU‟s ( 5 da face superior e 16 da face inferior) 

podem ser reconhecidos pelo programa depois que a face foi detectada e separada 

do resto da imagem. Esses AU‟s são agrupados por região e analisados 

individualmente conforme as regiões são isoladas para melhor verificação. A 

biblioteca OpenCV foi utilizada para desenvolver algoritmos para a detecção da face 

e das características relevantes a análise de emoções. O núcleo do software é o 

método proposto por Viola e Jones, que apresenta boas taxas de detecção e baixa 

taxa de falsos positivos. Também apresentamos um algoritmo para o contorno das 

imagens para análise da posição da característica. Utilizamos para a tomada de 

decisão da emoção os algoritmos de Redes Neurais com aprendizado por 

retropropagação através do programa Matlab™ da MathWorks. 

 

Palavras-chave: Detecção de face. Viola Jones. OpenCV. FACS. Action units. 
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ABSTRACT 

 It is frequent nowadays to want to look beyond the meaning of words; what 

does one truly mean, what is he feeling and how true is he being? Universal facial 

expressions to describe emotions have been identified (EKMAN, MATSUMOTO e 

FRIESSEN, 1982);(EKMAN, FRIESEN e HAGER, 2002) which include – anger, 

contempt, disgust, fear, sadness, surprise and happiness – and can be objectively 

and reliably distinguished one from another. The objective of this paper is to provide 

a fully automated program that analyses facial action units (AU‟s), based on Paul 

Eckman‟s Facial Acting Coding System (FACS), and determines the emotion felt by 

the person and the degree of certainty. Many programs of facial emotions already 

exist, however they are based on comparing the macro emotional state present on 

the photo or live feed. Knowing that these prototypic emotions occur rather 

infrequently we preferred to study the communication present in the change of one or 

a few discrete facial features. The program must analyze AU‟s described by 

permanent (mouth, eyebrows) and transient (wrinkles, furrows, bags) facial features 

captured in frontal-view pictures which are then compared to the neutral state. A total 

of 18 AU‟s (x upper face AU‟s and y lower face AU‟s) can be recognized by the 

program after the face has been located and separated from the rest of the picture. 

These units are grouped by region and analyzed distinctly as each section is isolated 

for better examination. We used the OpenCV library to develop algorithms to detect 

the face and other relevant features for the emotional analysis. The core of the 

software is the method proposed by Viola Jones that presents good detection 

indexes and low false positives. We also produced an algorithm which contours the 

image and shows its edges to facilitate the analysis of the exact location of the 

feature. We used neural networks algorithms with learning through the 

backpropagation algorithm to the emotions decision, and the software Matlab to the 

implementation.  

 

Keywords: Face detection. Viola Jones. OpenCV. FACS. Action units. 
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1 INTRODUÇÃO 

Expressões faciais são uma das mais poderosas, naturais e imediatas formas 

para seres humanos comunicarem suas emoções e intenções. O rosto pode 

expressar emoções antes que as pessoas coloquem em palavras, ou até mesmo 

antes de perceber os seus próprios sentimentos.  

Na última década, muitos progressos aconteceram para a criação de sistemas 

de computador para entender e usar essa forma natural de comunicação humana. A 

maioria dos sistemas tenta reconhecer um pequeno conjunto de expressões 

emocionais como a alegria, surpresa, raiva, tristeza, medo e aversão. Essa prática 

pode resultar do trabalho do Darwin, e mais recentemente do Ekman e do 

Friesen(1982), que propuseram que as emoções básicas possuem expressões 

faciais correspondentes. Porém, diariamente essas expressões são relativamente 

infrequentes. Em vez disso, emoções normalmente acontecem por mudanças sutis, 

em uma ou poucas características faciais discretas; como em um momento de raiva 

o aperto dos lábios, ou obliquamente baixar o canto dos lábios na hora da tristeza, e 

também levantar as sobrancelhas no momento de uma saudação. Para capturar 

essas sutilezas das emoções humanas e metalinguísticas da comunicação, o 

reconhecimento automático dessas pequenas mudanças é necessário. 

Ekman e Friesen (2002) então acharam ser necessária a criação de padrões 

de codificação. O Facial Action Coding System (FACS) é o mais objetivo e 

compreensivo sistema de codificação nas ciências comportamentais. Esse descreve 

as expressões faciais em unidades de ação (Action Units – AU’s). Das 44 AU‟s que 

eles definiram, 30 são anatomicamente relacionadas com a contração de músculos 

faciais específicos (12 AU‟s para a parte superior da face, e 18 AU‟s para a parte 

inferior), que podem corresponder a um músculo específico, ou a um grupo muscular, 

e são essencialmente fonemas faciais (que podem ser assimilados a formar 

expressões). 

Os AU‟s podem ocorrer individualmente ou em combinação. Quando ocorrem 

em combinação elas podem ser aditivas, na qual a associação não muda a 

aparência do elemento; ou podem ser não aditivas, na qual essa aparência sim irá 

mudar. Mesmo por existindo um número baixo de AU‟s, mais de 7.000 combinações 
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podem ocorrer. FACS fornecem o poder necessário para descrever os detalhes da 

expressão facial. 

Uma grande porcentagem da comunicação humana é não verbal, e entre 

esses sinais não verbais, grande parte está na forma de ações faciais. Um sistema 

que pudesse analisar as expressões faciais em tempo real sem intervenção humana, 

poderia ser aplicado em diferentes campos como: psicologia, computação afetiva e 

gráfica. Um sistema assim seria de extrema importância para uma máquina que é 

inteligente emocionalmente e socialmente, e que é esperada para lidar diretamente 

com o público.  

Antigamente existiam diferentes técnicas de classificação para reconhecer 

unidades de ação e suas combinações. A maioria das tentativas de fazer uma 

análise automatizada, possuíam um pequeno conjunto de protótipos de expressões 

emocionais. Alguns exemplos desses trabalhos são: 

-  M. Suwa, N Sugie e K. Fugimora (1978), que lançaram um programa na 

tentativa de analizar as expressões a partir do acompanhamento de 20 pontos 

específicos em uma sequencia de imagens; 

- K. Mase (1991) que manualmente selecionou regiões faciais que 

correspondiam a músculos da face e calculou o movimento dentro dessas regiões 

usando fluxo óptico;  

- Y. Yacoob e S. L. Davis (1996) que também usaram o fluxo óptico, mas ao 

invés de usarem os grupos de músculos, utilizaram a região de superfície de 

características faciais (sobrancelhas, olhos, nariz e boca).  

Neste trabalho, optamos por desenvolver um programa semi automatizado 

que analisa uma foto neutra e uma foto emotiva e informa qual a emoção mais 

provável descrita pelas características faciais. Usaremos os FACS(EKMAN, 

MATSUMOTO e FRIESSEN, 1982) como método de interpretação dos pontos 

específicos e pré-determinados. De acordo com Sayette (2001) podemos confiar na 

ocorrência e correta identificação dos AU‟s  para descrever as mudanças emocionais 

sentidas pelo individuo. 
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Até o presente momento, FACS são usados na analise de vídeos em câmera 

lenta e identificados por pessoas treinadas que os assistem repetidamente. Para 

descartar a interpretação humana das condições de interpretação, estudaremos 

métodos existentes para identificação de sequências gravadas e equacionaremos os 

possíveis movimentos para avaliar as diferenças em relação à posição neutra. 

Primeiramente estudamos cuidadosamente os AU‟s do FACS (EKMAN, 

FRIESEN e HAGER, 2002) e avaliamos quais seriam os possíveis de ser 

identificados e analisados em imagens frontais, escolhemos 21 que satisfazem 

esses quesitos e independem do tempo de duração (esse ponto é importante por 

estarmos analisando fotografias e não vídeos). Desses 21 AU‟s, 5 são localizados na 

parte superior da face e 16 na parte inferior. Para localizar as regiões desejadas da 

foto, utilizaremos a biblioteca OpenCV e a metodologia de Viola Jones para treinar 

HaarCascades específicos para cada AU. Primeiramente localizamos a face na foto, 

e depois partes características de cada AU como: sobrancelha; boca; olhos e nariz. 

Tendo a localização na foto das áreas desejadas, separamos apenas os 

contornos para limpar a imagem e conseguir matematicamente interpretar a 

presença/ausência do AU em questão. Esses AU‟s e sua determinada intensidade 

são combinados para descrever uma ou mais emoções presentes na fotografia. 

 

 Para a parte final da decisão de qual emoção que está sendo tratada, 

utilizamos redes neurais treinadas com o algoritmo de retropropagação. Utilizamos a 

caixa de ferramentas de redes neurais do Matlab para criar e treinar a rede e fazer 

os testes com outras imagens. 
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2 FACS 

O FACS (EKMAN, FRIESEN e HAGER, 2002), sistema de codificação das 

ações faciais na tradução literal é utilizado para separar e analisar individualmente 

cada pequena alteração descrita na face. Os AU‟s são as peças usadas no quebra 

cabeça que ilustra a face humana, os movimentos descritos nos AU‟s são causados 

pela atuação de músculos, os principais podem ser encontrados na Figura 1 abaixo: 

 

 

 

Cada AU é cuidadosamente estudado, entendendo por completo qual o 

músculo causador do movimento, quais as principais aparências demonstradas na 

face e as variações possíveis entre diferentes pessoas.  

 Toda essa atividade facial é manifestada em discretos movimentos 

interpretados pela presença ou não dos AU‟s equivalentes, no entanto é preciso 

integrar toda essa informação novamente para poder avaliar o evento facial presente 

e então interpretá-lo com emoção. A tabela abaixo apresenta as seis emoções 

estudadas neste trabalho e quais os AU‟s que a caracterizam: 

  

Figura 1 - Músculos da Face (Fonte: A - (ANÔNIMO) B - (MOORE 

e DALLEY, 2007) 
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Tabela 1 – AU’s representantes de emoções 

Emoção AU‟s Presentes 

 Típico Variações aceitáveis 

Surpresa          1+2+5B+26ou27 1+2+5B 

1+2+26 

1+2+27 

5B+26 

5B+27 

Medo 1+2+4+5+20+25,26 ou 27 1+2+4+5 

1+2+5 (25,26ou27 possíveis) 

5+20 (25,26ou27 possíveis) 

Alegria 6+12  

Tristeza 1+4+11+15B+25ou26 

1+4+15+25ou26 

6+15+25ou26 

1+4+11 

1+4+15B 

1+4+15B+17 

11+15B 

11+17 

Nojo 9 

9+16+25ou26 

9+17 

10 

10+16+25ou26 

10+17 

 

Raiva 4+5+7+1+22+23+25ou26 

4+5+7+10+23+25ou26 

4+5+7+23+25ou26 

4+5+7+17+23 

4+5+7+17+24 

4+5+7+23 

4+5+7+24 

Qualquer variação da 

combinação apresentada ao 

lado sem um dos seguintes 

AU‟s: 4, 5, 7 ou 10. 

 Fonte: (EKMAN, FRIESSEN e HAGER, 2002) 

 

A seguir apresentamos uma descrição detalhada de cada uma das Unidades 

de Ação: quais suas características visíveis, como reconhecê-las e os músculos 

envolvidos em cada movimento.  
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2.1 ACTION UNIT 1 

O maior músculo da face humana, o Frontalis, liga verticalmente o couro 

cabeludo à sobrancelha fixando todos os movimentos executados pela testa. A parte 

central (centralis) deste músculo é responsável realizar o deslocamento 

característico do AU1, que ajeita o canto interno da sobrancelha para cima formando 

uma figura obliqua. 

 

Figura 2 - A - Músculo Frontal (Fonte:(PUTZ e PABST, 2006)); B - AU1 

 

Aparência característica do AU1: 

- Seção interna da uma ou ambas as sobrancelhas e puxada para cima. 

- Na maioria dos casos produz uma forma obliqua às sobrancelhas. 

- Pode causar rugosidade na testa, no caso deste AU as rugas ficam limitadas 

apenas à área central da testa exibindo uma forma mais curva do que horizontal 

(centro mais elevado). Crianças e adolescentes podem não apresentar esse atributo 

e no caso de rugas permanentes, as mesmas podem apresentar profundidade 

acentuada. 

- O ponto extremo externo das sobrancelhas pode também se mover um 

pouco, mas diferentemente do que ocorre com o AU2, nesse caso o movimento é 

em direção à linha central da face e não para cima.  
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2.2 ACTION UNIT 2 

O mesmo músculo agente do AU descrito acima causa o movimento da 

parcela externa da sobrancelha, isso ocorre devido ao fato de que parte central e 

lateral tem ações separadas e independentes. No AU2 percebemos a contração das 

laterais da testa causando o levantamento da parte externa da sobrancelha 

formando uma figura curvada.                                                                                

  

Aparência característica do AU2: 

- Seção externa de uma ou ambas as sobrancelhas é levantada. 

- Produz na maioria dos casos uma forma arqueada aguda nas sobrancelhas. 

- Estica para cima a parte lateral das pálpebras. 

- Em muitos casos apresenta rugosidade distinta nas áreas laterais da testa 

em cima das sobrancelhas. Algumas pessoas podem também apresentar rugas na 

área central, porém estas são pouco profundas quando comparadas com as laterais.  

- Novamente é necessário muito cuidado para não confundir o AU1 com o 

AU2. A parte interna da sobrancelha pode também se movimentar, mas nesse caso 

é um movimento puxado para fora e não para cima. 

  

Figura 3 - AU2 
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2.3 ACTION UNIT 4 

Este AU é consequência da composição de ação de 3 músculos distintos da 

face superior: o primeiro deles, o Depressor supercilii, tem posicionamento obliquo à 

testa, emergindo perto da base do nariz e subindo para o exterior da testa logo 

acima da sobrancelha (este é o mais potente dos três e puxa as sobrancelhas em 

um movimento de união para baixo); o segundo músculo, o Depressor glabellae, 

também tem início próximo à base do nariz, mas sobe verticalmente com uma 

abertura radial; o último dos três músculos, o Corrugator supercilii, liga a parte 

interna da sobrancelha/testa ao canto do olho. Os músculos normalmente agem de 

forma integrada para proporcionar os elementos visíveis do AU4, mas dependendo 

da intensidade e particularidade do movimento, podemos perceber um pouco mais 

de participação de cada um deles. 

 

 

         

 

 

 

Aparência característica do AU4: 

- Abaixa uma ou ambas as sobrancelhas. Pode ser notado na parte interna, 

externa ou na sobrancelha como um todo. 

- Empurra a pálpebra para baixo e pode estreitar a abertura do olho. 

- Aproxima as sobrancelhas. 

- Produz rugas horizontais entre as sobrancelhas. Em alguns poucos casos, 

essas rugas podem estar presentes em um ângulo de 45˚ ou uma combinação de 

horizontal e angular. 

Figura 4 - A - Depressor supercilii; B – Depressor glabellaer; C – Corrugator  

supercilii (Fonte: (PUTZ e PABST, 2006)); D - AU4 
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- Pode causar pequenas rugas na base do nariz. 

- Pode produzir uma protuberância muscular descendo do centro da testa em 

direção ao canto interno da sobrancelha. 

 

2.4 ACTION UNIT 6 

Existe um músculo que circula a órbita ocular, orbicularis oculi (pars orbitalis), 

esse músculo percorre toda a área interna e próxima às sobrancelhas e abaixo do 

sulco. O AU6 puxa toda a pele nesta zona de influencia em direção ao olho. 

 

 

Figura 5 - A – Orbicularis oculi (Fonte:(PUTZ e PABST, 2006)); B - AU6 

       Aparência característica do AU6: 

- Puxa a pele da têmpora e bochechas em direção ao olho e contrai a banda 

externa do músculo. 

- Levanta o triângulo infra-orbital. 

 - Empurra a pele ao redor dos olhos em direção ao soquete ocular podendo 

estreitar a abertura dos olhos. 

- Pode causar pés de galinha, estendo-se radialmente à partir do canto 

externo do olho. 

- Aprofundo o sulco da pálpebra inferior. 

- Pode abaixar a porção lateral das sobrancelhas. 
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2.5 ACTION UNIT 7 

O músculo responsável pelo AU6 é também o responsável pela AU7, porém 

neste caso é a parte mais interna da coroa circular, pars palpebralis, (que percorre 

toda a área interna e próxima às pálpebras) que executa a ação. Quando contraído, 

ele puxa as pálpebras e toda a pele próxima para dentro em direção ao canto interno 

do olho. 

 

 

Figura 6 - AU7 

 

Aparência característica do AU7: 

- Estica as pálpebras. 

- Estreita a abertura dos olhos. 

- Normalmente é mais perceptível na pálpebra inferior do que na superior. 

- Levanta a pálpebra inferior fazendo com que mais do olho seja coberto do 

que o normal. 

- As pálpebras perdem parte de sua forma curva apresento desenho mais reto. 

- Um pequeno inchaço é perceptível abaixo da pálpebra inferior. 

- É possível que o AU7 seja percebido somente em um lado da face e AU6 na 

outra, nesse caso deve-se anotar a anomalia como AU6 bilateral.   
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2.6 ACTION UNIT 10 

O AU10 é causado pelo músculo Levator labii superioris. Ele emerge no 

centro do triângulo infraorbital indo até a extremidade inferior do nariz. Neste AU a 

pele acima do lábio é erguida em direção à bochecha puxando o lábio superior.  

 

 

Figura 7 - A - Levator labii superioris (Fonte:(PUTZ e PABST, 2006)); B - AU10 

        

Aparência característica do AU10: 

- Ergue o lábio superior. A parte central do lábio tem um movimento mais 

acentuado do que os cantos. 

- Causa o desenho de uma curva quadrática negativa nesta parte do lábio. 

- Empurra o triângulo infraorbital para cima, podendo causar rugas. 

- Pode inflar as bolsas laterais ao nariz. 

- Alarga e eleva as asas das narinas. 

- Em casos de movimento acentuado, os lábios podem separar.  
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2.7 ACTION UNIT 11 

O Zygomaticus minor, músculo responsável pelo movimento deste AU 

emerge abaixo do osso malar e termina acima do lábio superior. A indefinição exata 

da separação dos músculos nessa área do rosto pode acarretar na presença de 

pequenas ações de outros músculos também. 

 

 

Figura 8 - A - Zygomaticus minor (Fonte:(PUTZ e PABST, 2006)); B - AU11 

      

Aparência característica do AU11: 

- Puxa o lábio superior na diagonal em direção à orelha, o ponto puxado fica a 

um quarto da distância entre os cantos do lábio. 

- Aprofundo o sulco nasal. 

- Puxa a pele do sulco nasal para cima. 

- Infla levemente a parte central do triângulo infraorbital. 
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2.8 ACTION UNIT 12 

Este AU utiliza o mesmo músculo do AU anterior, porém com maior 

intensidade e por completo. Os cantos do lábio são puxados obliquamente em 

direção ao osso malar. 

 

 

Figura 9 - A - Zygomaticus major (Fonte:(PUTZ e PABST, 2006)); B – AU12 

       

Aparência característica do AU12: 

- Dá à boca um formato de “U”. 

- Aprofunda o sulco nasal, empurrando o lateralmente e para cima. A pele 

próxima a essa área tem o mesmo movimento podendo apresentar rugas. 

- Triângulo infraorbital é erguido podendo apresentar demarcação dos sulcos. 

- Um movimento forte pode apresentar: bolsas na pele inferior ao olho; pés de 

galinha; leve fechamento dos olhos; alargamento das narinas. 

- Vale prestar atenção que as diferenças entre um AU12 forte e um AU6 são 

tênues. 
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2.9 ACTION UNIT 15 

Causado pelo Depressor anguli oris que emerge na lateral do queixo e se 

estende até o canto do lábio. As laterais do lábio são puxadas para baixo. 

 

 

Figura 10 - A - Depressor anguli oris (Fonte:(PUTZ e PABST, 2006)); B - AU15 

       

Aparência característica do AU15: 

- Muda a forma do lábio deixando-o angulando para baixo nas extremidades, 

e geralmente o lábio inferior está esticado horizontalmente. 

- Produz rugas e aparência de bolsas logo abaixo do lábio inferior. 

- Pode causar mudança na área do queixo. 
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2.10    ACTION UNIT 17 

Causado pelo Mentalis que interliga o lábio inferior à área abaixo do queixo. 

Neste movimento a pele do queixo é esticada para cima empurrando o lábio. 

 

 

Figura 11 - A – Mentalis (Fonte:(PUTZ e PABST, 2006)); B - AU17 

        

Aparência característica do AU17: 

- Empurra o queixo para cima. 

- Lábio inferior pode ser erguido. 

- Pode causar rugas conforme a pele do queixo é esticada e em alguns casos 

apresenta uma pequena depressão abaixo do lábio. 

- Dá à boca a forma de um U invertido. 

- Em movimentos acentuados a área logo abaixo do lábio pode sobressair. 
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2.11 ACTION UNIT 18 

Os músculos responsáveis por este AU estão localizados acima do lábio 

superior (Incisivii labii superioris) e abaixo do lábio inferior (Incisivii labii inferioris). 

Quando contraídos, eles puxam os lábios em direção radial causando sobre-

saliência dos mesmos. 

 

 

Figura 12 – A:Buccinator; B:Incisivii labii superioris; C:Incisivii labii inferioris 

(Fonte:(PUTZ e PABST, 2006)); D:AU18 

                

Aparência característica do AU18: 

- Empurra os lábios para fora e os puxa radialmente. 

- Deixa a abertura oral menor e mais redonda. 

- Produz rugas na pele acima e abaixo dos lábios. 

- Pode ocasionalmente afetar somente um dos lábios, T18 (superior) B18 

(inferior). 
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2.12 ACTION UNIT 19 

Neste Action Unit é preciso ver a língua à frente da linha dos dentes. O critério 

de sobre-saliência da língua é necessário para diferenciar esse AU do perfil normal 

de comer, falar, etc.. Não basta ver a língua quando a boca estiver aberta. 

 

 

Figura 13 - AU19 

 

Aparência característica do AU19: 

- Pelo menos a ponta da língua deve estar visível e a frente dos dentes, na 

linha da parte vermelha dos lábios. 

- Não existe distinção entre o quanto da língua está aparente ou sua posição 

quando fora da boca. 

- Este AU normalmente é acompanhado pelos AU‟s 25, 26 ou 27. 

  



29 

 

2.13    ACTION UNIT 20 

Este AU tem ação principal do músculo Risorius, o canto do lábio é ligado à 

extremidade da mandíbula logo abaixo da orelha. Os lábios são esticados 

horizontalmente em direção às orelhas. 

 

 

Figura 14 - A – Risorius (Fonte:(PUTZ e PABST, 2006)); B - AU20 

         

Aparência característica do AU20: 

- Apresenta movimento principal no eixo horizontal, porém as extremidades 

laterais do lábio podem ser elevadas ou rebaixadas. 

- Alonga o perfil da boca. 

- Afina os lábios. 

- Parte da bochecha próxima ao lábio é esticada. 

- Pode apresentar rugas nas áreas próximas ao canto do lábio. 

- Estica a pele do queixo. 

- Pode alargar as narinas. 

  



30 

 

2.14    ACTION UNIT 23 

O Orbicularis oris, presente na órbita oral dentro dos lábios é responsável por 

apertar e afiná-los. 

 

 

Figura 15 - A - Orbicularis oris (Fonte:(PUTZ e PABST, 2006)); B - AU23 

        

Aparência característica do AU23: 

- Aperta os lábios, deixando a parte avermelhada mais fina. 

- Pode causar um enrolamento da parte vermelha do lábio, fazendo-o 

praticamente desaparecer. 

- Pode aparentar sobre saliência dos lábios. 

- Pode apresentar rugas acima do lábio e bolsas musculares abaixo. Rugas 

no queixo também podem ocorrer. 

- Pode ocasionalmente afetar somente um dos lábios, T23 (superior) B23 

(inferior). 
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2.15    ACTION UNITS 25, 26 & 27 

Estes AU‟s são analisando em conjunto pois tratam do movimento da abertura 

da boca, separação dos lábios e dos dentes. O AU25 relaciona a distancio entre os 

lábios; AU26 especifica o movimento vertical da mandíbula; e o AU27 mede o 

movimento horizontal das laterais dos lábio quando este é aberto. 

 

Aparência característica do AU25: 

- Separação dos lábios. 

- Exposição dos dentes e gengivas. 

- Cavidade oral pode ser exposta, esta característica é dependente dos AU‟s 

26 e 27 

Aparência característica do AU26: 

- Mandíbula é abaixada, inferindo uma possível separação dos dentes. 

- Caso os lábios estejam separados é possível ver uma distância entre os 

dentes superiores e inferiores. 

- Passa a impressão de que a mandíbula caiu, sem presença de força sendo 

executada (simples relaxamento do músculo) 

Aparências características do AU27: 

- A mandíbula é forçada para baixo. 

- Abertura da boca ocorre até rebaixamento máximo da mandíbula, mudando 

a forma oval da boca de eixo longo horizontal para vertical. 

- Aparente esticamento dos lábios. 

- Achatamento das bochechas. 

- É possível que ocorra sem separação dos lábios. 
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Figura 16 - A - Temporalis; B - Masseter; C – Pterygoids centralis (Fonte:(PUTZ e 

PABST, 2006)) 

              

 

Figura 17 - A - AU25 sem aparecimento da cavidade oral; B - AU25 com aparecimento 

da cavidade oral; C - AU26; D - AU27 
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2.16     ACTION UNIT 28 

Envolve a ação do músculo Orbicularis oris, orbital à boca. Neste AU o(s) 

lábio(s) são puxados para dentro da boca. 

 

Aparência característica do AU28: 

- Partes vermelhas e adjacentes do(s) lábio(s) são sugados para dentro da 

boca cobrindo os dentes. 

- Estica a pela acima e abaixo dos lábios conforme estes são puxados para 

dentro. 

- Achata pele do queixo sem movê-lo para cima. 

- Pode causar rugas nas laterais dos lábios. 

- Pode ocasionalmente afetar somente um dos lábios, T28 (superior) B28 

(inferior). 
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2.17     ACTION UNIT 29 

O Pterygoids lateralis causa a protusão maxilar descrita neste AU. 

 

 

Figura 18 - A - Pterygoids lateralis (Fonte:(PUTZ e PABST, 2006)); B - AU29 

 

 

Aparência característica do AU29: 

- Maxilar inferior é empurrado para frente. 

- Queixo aparente estar cravado para fora. 

- Dentes inferiores ficam a frente dos superiores. 
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2.18     ACTION UNIT 30 

Novamente o músculo Pterygoids lateralis move a mandíbula, mas dessa vez 

o movimento é lateral. 

 

 

Figura 19 - AU30 

Aparência característica do AU30: 

- Queixo e lábio inferior são deslocados da linha média, em um movimento 

lateral. 

- Quando a boa esta aberta (AU25, 26 ou 27) os dentes inferiores ficam  fora 

de eixo em relação aos superiores. Quanto estão deslocados para a esquerda = L30, 

quando para a direita = R30. 
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2.19     ACTION UNIT 32 

 

 

Figura 20 - AU32 

Aparência característica do AU32: 

- E possível ver uma linha de dentes (inferior ou superior) mordendo o lábio. 

- Pode ocorrer com apenas uma pequena parte do lábio, e não ele inteiro. 
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3 MÉTODOS DE DETECÇÃO DE FACES 

Os métodos de detecção faces são baseados em diversos tipos de informação, 

como intensidade de imagem em cinza, as arestas, diferença de cores, geometria da 

face, entre outros. Aqui explicaremos superficialmente alguns dos métodos 

desenvolvidos. 

 

3.1 INTENSIDADE DE IMAGEM CINZA 

 

3.1.1 Viola e Jones(2001) 

O principal método de análise de imagem em cinza é o proposto por Viola & 

Jones (VIOLA e JONES, 2001) que é capaz de processar imagens de forma rápida e 

é o método mais utilizado e citado na literatura especializada. Ele é baseado em três 

inovações principais que serão explicadas na Seção‎4.1m que são: 

 Imagem Integral – permite que todos os dados sejam extraídos em 

apenas uma varredura na imagem 

 Classificadores utilizando AdaBoost – seleciona os features críticos da 

imagem. 

 Combinação de classificadores em cascata – otimiza a utilização dos 

classificadores onde a probabilidade de se encontrar uma face é maior. 

Os autores testaram o método e obtiveram em média 80% de taxa de detecção 

e 5% de taxa de erro.  

 

3.1.2 Rowley(1996) 

O método examina pequenas janelas da imagem e define se há uma face nesta 

janela ou não utilizando redes neurais.  Os autores testaram a abordagem em um 

conjunto de 130 imagens e obtiveram uma média de 80% de detecção. 
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3.1.3 Sung e Poggio (1998) 

Sung e Poggio apresentaram um algoritmo de detecção de faces em fundos 

complexos, através de um aprendizado baseado em modelos. Em cada posição da 

imagem, um vetor de características é calculado entre a imagem e o modelo. 

Baseado nestes vetores o classificador indica se há uma face ou não. 

Os autores testaram o método em um conjunto de 324 imagens e obteve uma 

média 87% de detecção e 2,5% de falsos positivos. 

 

3.2 ARESTAS 

 

3.2.1 Wang e Tan(2000) 

 Wang e Tan desenvolveram um método baseado no formato da face, a 

imagem é realçada por seu histograma e em seguida é realizada a detecção por 

arestas utilizando um filtro. As arestas são então ligadas e o contorno da face é 

determinado utilizando a direção da ligação das arestas. 

 O algoritmo foi testado pelos autores com 50 imagens de fundo simples e 40 

imagens de fundo complexo. No primeiro foram detectadas 100% das faces mas 16% 

em posição errada devido a inclinação do rosto e não houve falsos-positivos. No 

segundo conjunto foram detectadas 87,5% com 12,5% em posição erradas e 12,5% 

de falsos-positivos. 
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3.3 CORES 

 

3.3.1 Cai e Goshtasby(1999) 

 Este método  detecta faces através de transformações de cada cor em um 

nível de cinza e utilizando uma função de probabilidade para encontrar faces 

humanas na imagem. 

 Os autores testaram o método e obtiveram uma taxa de detecção de 87% e 

8,7% de falsos-positivos 

 

3.3.2 Hayuan & Yashida(1995) 

 Este método se baseia na teoria fuzzy, utilizando dois modelos. Um para 

descrever a cor do cabelo e outro para a cor da pele. Baseado em uma função de 

probabilidade para o cabelo e para a pele, tenta encontrar as faces nas imagens. 

 Os autores testaram o método com 233 faces e obtiveram 97% de taxa de 

detecção 

 

3.4 GEOMETRIA 

 

3.4.1 Jeng et al (1998) 

 Neste sistema localiza-se as possíveis coordenadas dos olhos e então busca-

se um nariz, uma boca e sobrancelhas. Os autores testaram o método  com 114 

imagens e obtiveram 86% de taxa de detecção. 
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4 TRABALHO DESENVOLVIDO  

 

 A primeira parte do desenvolvimento de software para a analise da expressão 

facial e identificação da emoção sentida é a detecção da face e das características 

(boca, olhos, nariz, etc.). Existem diversos fatores que dificultam a localização da 

face, como barba, acessórios, cabelos sobre a face. Além de problemas como 

iluminação, tamanho e posição. Para o nosso trabalho tratamos de imagens simples 

com apenas uma face e bem iluminada para a detecção. 

 

4.1 MÉTODO BASE 

  

 O método escolhido para desenvolvermos este trabalho foi a técnica 

desenvolvida por Paul Viola e Michael Jones(2001) devido a sua facilidade de uso, 

rapidez , possuir diversos sistemas que utilizam este método, além de ser muito 

citado na literatura especializada. 

O método permite uma implementação rápida e robusta de objetos, o trabalho, 

segundo os autores, foi motivado pela possibilidade de detecção de faces. O método 

desenvolvido possui taxas de detecção de faces e de falso-positivos equivalentes 

aos melhores métodos publicados à época ((CAI e GOSHTASBY, 1999); (HJELMAS 

e LOW, 2001);(KAH e TOMASO, 1998)). 

Existem três principais contribuições para a obtenção dos resultados descritos.  

A primeira é a criação de uma nova representação de imagem chamada 

Imagem Integral. Ela permite uma rápida avaliação das características (features)  

para a detecção da face. Uma imagem integral pode ser obtida com uma única 

varredura da imagem original.  A ideia inspirada no trabalho de Papageorgiou (1998), 

mas trabalhando sem a informação de intensidade da imagem pode ser computada 
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utilizando poucas operações por pixel, e uma vez feitas, qualquer feature do tipo 

Haar pode ser calculada em qualquer escala ou localização. 

A segunda contribuição é o método de construção de um classificador 

selecionando um pequeno número de features importantes selecionadas a partir do 

algoritmo de treino AdaBoost. Isto se faz necessário, pois o número de features do 

tipo Haar é muito grande. Para garantir uma classificação rápida, o processo de 

aprendizagem deve excluir a grande maioria das features disponíveis e focar o 

processo em um pequeno conjunto de features críticas.  

A terceira principal contribuição do método proposto por Viola e Jones(2001)  

é uma técnica para combinar sucessivamente  classificadores complexos em uma 

estrutura de cascata aumentando a velocidade de detecção. Assim as avaliações 

complexas (mais demoradas) são executadas apenas em regiões que há uma 

probabilidade maior de se encontrar uma face. A medida de avaliação desta técnica 

é a taxa de falsos negativos, pois uma sub-imagem rejeitada nunca volta ao 

processo de classificação. 

 

4.1.1 Imagem Integral 

 

 A imagem integral, base de todo o método proposto constitui em: dado um 

ponto (x,y), a imagem integral dele contém a somatória de todos os pixels acima e a 

esquerda do ponto x,y. 

                  

 

    

 

    

 

Onde ii(x,y) é a Imagem integral do ponto (x,y) e i(x,y) é a imagem original. 

Ver figura abaixo. 
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Figura 21 – valor da imagem integral no ponto (x,y) (Fonte: (VIOLA e JONES, 2001)) 

 

 Utilizando as seguintes recorrências a imagem integral pode ser calculada 

com uma varredura sobre a imagem inteira. 

                         

                          

Onde s(x,y) é a soma cumulativa da linha e s(x,-1) = ii(-1,y) = 0 

Utilizando a imagem integral qualquer retângulo pode ser computado com o 

acesso a apenas quatro pontos da imagem como pode ser visto na figura abaixo, 

onde a soma dos pixels do retângulo D pode ser calculada como: 

                        

Pois ii(1) é a soma dos pixels da área A, ii(2) da área A+B, ii(3) da área A+C e 

ii(4) da área A+B+C+D. 
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Figura 22 – Exemplo para cálculo da imagem integral no retângulo D (Fonte: (VIOLA e 

JONES, 2001)) 

 

 

4.1.2 Features 

  

 O procedimento de detecção classifica as imagens baseado nos valores dos 

features como citado acima. Existem muitos motivos para utilizá-los ao invés dos 

pixels diretamente. A principal razão é que os features podem servir para codificar 

especificamente um dado domínio, o que seria mais difícil utilizando a análise por 

pixels. E o segundo motivo mais importante é a rapidez com que se pode trabalhar 

com os features.  

 O valor de um feature de dois retângulos (partes A e B da Figura 23)  é a 

diferença entre a soma dos pixels das duas regiões retangulares. As áreas tem o 

mesmo tamanho e formato e são adjacentes horizontal ou verticalmente.  Para o 

features baseado em três retângulos (parte C da Figure 23)   computa a soma dos 

dois retângulos exteriores e a diferença do retângulo central. E para o feature de 

quatro retângulos  é computado a diferença da soma dos retângulos diagonais. 
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Figura 23 – Features retangulares para utilizados para detecção (Fonte: (VIOLA e 

JONES, 2001)) 

 

 Os features apresentados são relativamente primitivos se comparados com 

filtros dirigíveis estudados por Freeman (1991), mas são mais eficientes para 

encontrar extremidades em figuras rígidas. 

 

4.1.3 Aprendizado de Máquina 

 

Dado um conjunto de features e um conjunto de imagens de faces e não 

faces para treinamento, qualquer procedimento de Aprendizado de Máquina pode 

ser utilizado para criar um classificador.  No sistema proposto por Viola e 

Jones(2001), uma variante do AdaBoost é utilizada tanto para selecionar um 

pequeno conjunto de features e treinar o classificador enquanto que no AdaBoost 

original o algoritmo de aprendizado é utilizado para impulsionar  a performance de 

classificação de um “classificador fraco”, combinando diversos classificadores fracos 

e criar um “classificador forte”. 
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O grande desafio do algoritmo é encontrar os features críticos para criar um 

classificador eficiente, pois há cerca de 180.000 features retangulares em imagens 

de 24x24 pixels em cada sub-imagem. Mesmo que cada característica possa ser 

processada rapidamente, computar integralmente todos os features é proibitivo. 

Para atingir o objetivo de eficiência e encontrar os features críticos, o 

classificador fraco é desenvolvido para selecionar um único feature retangular que 

melhor separa entre exemplos positivos e negativos (menor erro). Para cada feature 

o classificador fraco determina o limite ótimo da função de classificação. 

Portanto um classificador fraco hj(x) consiste em uma sub-imagem x, um 

feature fj, um limite θj e uma paridade pj que indica a direção da desigualdade.  

        
               
                  

  

Na Figura 24 descrevemos em resumo o algoritmo de AdaBoost para seleção 

dos features de maior peso. Nele, um conjunto T de hipóteses (cada hipótese ti 

criada com um único feature) avalia o conjunto de imagens. A saída do algoritmo é 

uma hipótese final criada a partir da combinação ponderada de T, onde o peso de ti 

é inversamente proporcional ao seu erro de treinamento. 
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 Sendo T o conjunto de hipóteses a serem avaliadas onde cada t é 

construída utilizando um único feature. 

 Dadas imagens de exemplo (x1, y1),...(xn,yn) onde 

   
                         
                         

  

 Inicializar os pesos       

 

  
         

 
 

  
         

  onde 

 
                               

                         
  

 Para t = 1...T: 

o Normalizar os pesos      
    

       
 
   

, assim wt é a distribuição de 

probabilidade 

o Para cada feature, j, treinar um classificador hj restrito a um único 

feature. 

 Calcular o erro                   

o Escolher o classificador ht com o menor erro et 

o Atualizar os pesos 

             
     onde   

  

    
 e 

    
                                      

                
  

 O classificador forte é dado por: 

       
              

 

 
   
 
   

 
   

                
   onde αt = log (1/βt) 

Figura 24: Algoritmo para construir um classificador forte 
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4.1.4 O Aprendizado em Cascata 

 

Esta seção descreve o algoritmo para a construção de cascatas de 

classificadores que consegue uma maior performance de detecção do que o 

AdaBoost. O principio chave do algoritmo é que classificadores menores podem ser 

construídos para rejeitar muitas sub-imagens negativas enquanto detecta todas as 

possíveis instâncias de uma face (o limite do classificador impulsionado pode ser 

ajustado para que os falsos-negativos sejam próximos de zero). Classificadores 

simples são utilizados para rejeitar a maiorira das sub-imagens enquanto 

classificadores mais complexos são chamados para diminuir a taxa de falsos 

positivos.  

Os níveis de cascata são construídos treinando classificadores utilizando o 

algoritmo apresentado na Figura 27, tal que estes são vários classificadores 

sequenciais, cada um deles com um número menor de classificadores fracos. 

Começando com um classificador forte de dois features, um filtro de face eficiente 

pode ser obtido ajustando o limite do classificador forte para minimizar falsos-

negativos. O limite inicial, 
 

 
   
 
   , é projetado para minimizar o erro no conjunto de 

treino. Um limite mais baixo rende taxas superiores de detecção e de falsos-positivos. 

O desempenho de detecção de um classificador de dois features não é 

aceitável como um sistema de detecção de objetos. Entretanto o classificador pode 

diminuir significativamente o numero de sub-imagens que precisam de um 

processamento mais complexo com poucas operações 



48 

 

 

Figura 25: a e b – primeiras features do ada-boost, c – imagem a ser classificada, d e e 

– feature sobreposta a imagem. O primeiro feature mede a diferença de intensidade entre a 

região dos olhos e a região das bochechas superiores. O segundo feature compara a 

intensidade da região dos olhos em comparação com o nariz (Fonte: (VIOLA e JONES, 2001)) 

 

O processo de detecção tem a forma de uma árvore de decisão degenerada, 

ou cascata (ver Figura 26). Um resultado positivo do primeiro classificador dispara a 

avaliação pelo segundo classificador, que foi ajustado para obter altas taxas de 

detecção. Um resultado positivo no segundo classificador dispara o terceiro e assim 

por diante. Um resultado negativo em qualquer ponto, leva a rejeição da sub-imagem.

 

Figura 26 – Processo de detecção em cascata  

 A estrutura de cascata é construída com base num conjunto de detecção e de 

metas de desempenho.  Dada uma cascata de classificadores, a taxa de falsos 

positivos da cascata é: 

a b 

c d e 
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 Onde F é a taxa de falsos-positivos da cascata de classificadores, K é o 

número de classificadores e fi é a taxa de falso-positivo do i-ésimo classificador. A 

taxa de detecção é: 

 

 Onde D é a taxa de detecção da cascata de classificadores e di é a taxa de 

detecção do i-ésimo classificador. 

 Dados os objetivos concretos de taxa de detecção e falsos-positivos, é 

possível determinar as taxas de cada estágio do processo em cascata. Por exemplo 

para uma taxa de detecção de 90% pode ser obtida com um classificador de 10 

estágios se cada estágio tem taxa de detecção de 0.99 (0.9910 = 0.90).  

 O número de features avaliadas ao processar imagens reais é 

necessariamente um processo probabilístico. Dada uma sub-imagem qualquer, ela 

progredirá na cascata, um classificador por vez, até que seja determinado se a 

imagem é uma face ou não. O comportamento esperado deste processo é 

determinado pela distribuição das imagens num conjunto de testes. A medida chave 

de cada classificador é a taxa de positivos (a proporção de imagens que estão 

marcadas como potenciais faces). O número de features que serão avaliados é dado 

por: 

 

 Onde N é o número esperado de features a serem avaliados, K é o número 

de classificadores, pi é a taxa de positivos do i-ésimo classificador e ni é o número de 

features no i-ésimo classificador. 
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 O processo de treinamento envolve algumas considerações a serem feitas. 

Na maioria dos casos quanto mais features forem avaliadas, maior será a taxa de 

detecção e menor será a taxa de falsos-positivos, entretanto será necessário mais 

tempo para avaliar a imagem. A principio, pode-se definir um modelo de otimização 

no qual são considerados: 

 O número de estágios de classificadores 

 O número de features de cada estágio 

 O limite de cada estágio 

Para minimizar o número de esperado de features N, dado um objetivo F e D. 

Entretanto fazer esta otimização é um problema difícil. 

 Na prática um modelo muito simples é utilizado para produzir um classificador 

eficiente e efetivo. São selecionadas as taxas mínimas aceitáveis para f i  e di. Cada 

camada da cascata é treinada utilizando AdaBoost como explicado acima com o 

número de features usado, aumentando até termos os objetivos de taxa de detecção 

e falsos-positivos para aquele nível. As taxas são testadas testando o classificador 

num conjunto de imagens de validação. Se a taxa de falsos-positivos não tiver sido 

atingida, mais uma camada é adicionada a cascata. O algotmo está explicado mais 

detalhadamente na figura abaixo. 
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 Selecionar os valores de f, a máxima taxa de falsos-positivos por 

camada. 

 Selecionar os valores de d, a taxa mínima de detecção por camada. 

 Selecionar a taxa Fobj de falsos-positivos do classificador final. 

 P = conjunto de exemplos positivos (face) 

 N = conjunto de exemplos negativos (não-face) 

 Fo = 1 

 Do = 1 

 I = 0 

 Enquanto Fi > Fobj 

o i = i + 1 

o ni = 0 

o Fi = Fi-1 

o Enquanto Fi > f * Fi-1 

 ni = ni+1 

 Utilizar P e N para treinar o classificador ni features com 

AdaBoost 

 Avaliar o classificador em cascata atual com o conjunto de 

validação para determinar Fi e Di 

 Diminuir o limite para o i-ésimo classificador até que a 

taxa de detecção da cascata atual seja d*Di-1 

o N = 0 

o Se Fi > Fobj 

 Avaliar o classificador em cascata atual no conjunto de 

imagens negaticas e inserir as detecções falsas no 

conjunto N 

Figura 27: Algoritmo para construção de detector em cascata 
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5 SOFTWARE 

5.1 OPEN CV 

 Foi utilizada a biblioteca OpenCV por ser uma biblioteca consagrada e de 

acesso livre. Possui diversos algoritmos implementados como exemplo além de 

vasta documentação oficial. É possível encontrar diversos fóruns de discussão na 

internet que auxiliaram o processo de aprendizagem da linguagem de programação. 

 OpenCV é uma biblioteca desenvolvida em código C e C++ e é multi-

plataforma (pode ser utilizada em Linux, Windows e  MacOS). Além disso, possui 

interface para desenvolvimento em outras linguagens como Python e Ruby. A 

principal meta do OpenCV é prover a infra-estrutura básica para o desenvolvimento 

de aplicações de Visão Computacional. 

5.2 TRABALHO DESENVOLVIDO 

 Basicamente desenvolvemos aplicativos baseados na documentação do 

OpenCV para detecção da face e das características do rosto. Após isto, 

desenvolvemos um método para detectar o contorno destas características para 

análise futura das emoções. 

 

5.2.1 Detecção 

 O algoritmo para detecção da face e das partes do rosto é o mesmo, a única 

diferença é o Haar Cascade utilizado em cada etapa para classificação das imagens. 

O código busca o feature desejado conforme o Haar Cascade utilizado e desenha 

um círculo em volta do objeto encontrado. 

 Utilizamos para testar o algoritmo e escolher o cascade diversas fotos com 

iluminação diferentes, com mais de um rosto e outros, entretanto os resultados 

foram satisfatórios apenas para fotos simples e bem iluminadas. 
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#define CV_NO_BACKWARD_COMPATIBILITY 
#include "cv.h" 
#include "highgui.h" 
 
#include <iostream> 
#include <cstdio> 
 
#ifdef _EiC 
#define WIN32 
#endif 
 
using namespace std; 
using namespace cv; 
 
void detectAndDraw( Mat& img, 
                   CascadeClassifier& cascade, CascadeClassifier& nestedCascade, 
                   double scale); 
 
String cascadeName = 
"../../data/haarcascades/haarcascade_frontalface_alt2.xml"; //Aqui se colocam os 

HaarCascades desejados 
String nestedCascadeName = 
"../../data/haarcascades/haarcascade_frontalface_alt_tree.xml"; 
 
int main( int argc, const char** argv ) 
{ 
    CvCapture* capture = 0; 
    Mat frame, frameCopy, image; 
    const String scaleOpt = "--scale="; 
    size_t scaleOptLen = scaleOpt.length(); 
    const String cascadeOpt = "--cascade="; 
    size_t cascadeOptLen = cascadeOpt.length(); 
    const String nestedCascadeOpt = "--nested-cascade"; 
    size_t nestedCascadeOptLen = nestedCascadeOpt.length(); 
    String inputName; 
 
    CascadeClassifier cascade, nestedCascade; 
    double scale = 1; 
 
    for( int i = 1; i < argc; i++ ) 
    { 
        if( cascadeOpt.compare( 0, cascadeOptLen, argv[i], cascadeOptLen ) == 0 ) 
            cascadeName.assign( argv[i] + cascadeOptLen ); 
        else if( nestedCascadeOpt.compare( 0, nestedCascadeOptLen, argv[i], 

nestedCascadeOptLen ) == 0 ) 
        { 
            if( argv[i][nestedCascadeOpt.length()] == '=' ) 
                nestedCascadeName.assign( argv[i] + nestedCascadeOpt.length() + 1 ); 
            if( !nestedCascade.load( nestedCascadeName ) ) 
                cerr << "WARNING: Could not load classifier cascade for nested objects" << 

endl; 
        } 
        else if( scaleOpt.compare( 0, scaleOptLen, argv[i], scaleOptLen ) == 0 ) 
        { 
            if( !sscanf( argv[i] + scaleOpt.length(), "%lf", &scale ) || scale < 1 ) 
                scale = 1; 
        } 
        else if( argv[i][0] == '-' ) 
        { 
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            cerr << "WARNING: Unknown option %s" << argv[i] << endl; 
        } 
        else 
            inputName.assign( argv[i] ); 
    } 
 
    if( !cascade.load( cascadeName ) ) 
    { 
        cerr << "ERROR: Could not load classifier cascade" << endl; 
        cerr << "Usage: facedetect [--cascade=\"<cascade_path>\"]\n" 
            "   [--nested-cascade[=\"nested_cascade_path\"]]\n" 
            "   [--scale[=<image scale>\n" 
            "   [filename|camera_index]\n" ; 
        return -1; 
    } 
 
    if( inputName.empty() || (isdigit(inputName.c_str()[0]) && inputName.c_str()[1] == 

'\0') ) 
        capture = cvCaptureFromCAM( inputName.empty() ? 0 : inputName.c_str()[0] - 

'0' ); 
    else if( inputName.size() ) 
    { 
        image = imread( inputName, 1 ); 
        if( image.empty() ) 
            capture = cvCaptureFromAVI( inputName.c_str() ); 
    } 
    else 
        image = imread( "lena.jpg", 1 ); 
 
    cvNamedWindow( "result", 1 ); 
 
    if( capture ) 
    { 
        for(;;) 
        { 
            IplImage* iplImg = cvQueryFrame( capture ); 
            frame = iplImg; 
            if( frame.empty() ) 
                break; 
            if( iplImg->origin == IPL_ORIGIN_TL ) 
                frame.copyTo( frameCopy ); 
            else 
                flip( frame, frameCopy, 0 ); 
 
            detectAndDraw( frameCopy, cascade, nestedCascade, scale ); 
 
            if( waitKey( 10 ) >= 0 ) 
                goto _cleanup_; 
        } 
 
        waitKey(0); 
_cleanup_: 
        cvReleaseCapture( &capture ); 
    } 
    else 
    { 
        if( !image.empty() ) 
        { 
            detectAndDraw( image, cascade, nestedCascade, scale ); 
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            waitKey(0); 
        } 
        else if( !inputName.empty() ) 
        { 
            /* assume it is a text file containing the 
            list of the image filenames to be processed - one per line */ 
            FILE* f = fopen( inputName.c_str(), "rt" ); 
            if( f ) 
            { 
                char buf[1000+1]; 
                while( fgets( buf, 1000, f ) ) 
                { 
                    int len = (int)strlen(buf), c; 
                    while( len > 0 && isspace(buf[len-1]) ) 
                        len--; 
                    buf[len] = '\0'; 
                    cout << "file " << buf << endl; 
                    image = imread( buf, 1 ); 
                    if( !image.empty() ) 
                    { 
                        detectAndDraw( image, cascade, nestedCascade, scale ); 
                        c = waitKey(0); 
                        if( c == 27 || c == 'q' || c == 'Q' ) 
                            break; 
                    } 
                } 
                fclose(f); 
            } 
        } 
    } 
 
    cvDestroyWindow("result"); 
 
    return 0; 
} 
 
void detectAndDraw( Mat& img, 
                   CascadeClassifier& cascade, CascadeClassifier& nestedCascade, 
                   double scale) 
{ 
    int i = 0; 
    double t = 0; 
    vector<Rect> faces; 
    const static Scalar colors[] =  { CV_RGB(0,0,255), 
        CV_RGB(0,128,255), 
        CV_RGB(0,255,255), 
        CV_RGB(0,255,0), 
        CV_RGB(255,128,0), 
        CV_RGB(255,255,0), 
        CV_RGB(255,0,0), 
        CV_RGB(255,0,255)} ; 
    Mat gray, smallImg( cvRound (img.rows/scale), cvRound(img.cols/scale), 

CV_8UC1 ); 
 
    cvtColor( img, gray, CV_BGR2GRAY ); 
    resize( gray, smallImg, smallImg.size(), 0, 0, INTER_LINEAR ); 
    equalizeHist( smallImg, smallImg ); 
 
    t = (double)cvGetTickCount(); 
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    cascade.detectMultiScale( smallImg, faces, 
        1.1, 2, 0 
        //|CV_HAAR_FIND_BIGGEST_OBJECT 
        //|CV_HAAR_DO_ROUGH_SEARCH 
        |CV_HAAR_SCALE_IMAGE 
        , 
        Size(30, 30) ); 
    t = (double)cvGetTickCount() - t; 
    printf( "detection time = %g ms\n", t/((double)cvGetTickFrequency()*1000.) ); 
    for( vector<Rect>::const_iterator r = faces.begin(); r != faces.end(); r++, i++ ) 
    { 
        Mat smallImgROI; 
        vector<Rect> nestedObjects; 
        Point center; 
        Scalar color = colors[i%8]; 
        int radius; 
        center.x = cvRound((r->x + r->width*0.5)*scale); 
        center.y = cvRound((r->y + r->height*0.5)*scale); 
        radius = cvRound((r->width + r->height)*0.25*scale); 
        circle( img, center, radius, color, 3, 8, 0 ); 
        if( nestedCascade.empty() ) 
            continue; 
        smallImgROI = smallImg(*r); 
        nestedCascade.detectMultiScale( smallImgROI, nestedObjects, 
            1.1, 2, 0 
            //|CV_HAAR_FIND_BIGGEST_OBJECT 
            //|CV_HAAR_DO_ROUGH_SEARCH 
            //|CV_HAAR_DO_CANNY_PRUNING 
            |CV_HAAR_SCALE_IMAGE 
            , 
            Size(30, 30) ); 
        for( vector<Rect>::const_iterator nr = nestedObjects.begin(); nr != 

nestedObjects.end(); nr++ ) 
        { 
            center.x = cvRound((r->x + nr->x + nr->width*0.5)*scale); 
            center.y = cvRound((r->y + nr->y + nr->height*0.5)*scale); 

            RADIUS = CVROUND((NR->WIDTH + NR->HEIGHT)*0.25*SCALE); 
            circle( img, center, radius, color, 3, 8, 0 ); 
        } 
    }   
    cv::imshow( "result", img );     
} 

Figura 28: Código fonte para a detecção de features 

  



57 

 

5.2.1.1 Resultados 

5.2.1.1.1 Face 

 

Figura 29 – Resultado para detecção da face 

 

5.2.1.1.2 Olhos 

 

Figura 30 – Resultado para detecção dos olhos 
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5.2.1.1.3 Nariz 

 

Figura 31 – Resultado para detecção do nariz 

 

5.2.1.1.4 Boca 

 

Figura 32 – Resultado para detecção da boca 
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5.2.2 Contorno 

 

 Utilizamos o algoritmo fornecido com a biblioteca OpenCV para encontrar os 

contornos da face para a análise da posição e angulação dos features. 

 

#ifdef _CH_ 

#pragma package <opencv> 

#endif 

 

#define CV_NO_BACKWARD_COMPATIBILITY 

 

#ifndef _EiC 

#include "cv.h" 

#include "highgui.h" 

#endif 

 

char wndname[] = "Edge"; 

char tbarname[] = "Threshold"; 

int edge_thresh = 1; 

 

IplImage *image = 0, *cedge = 0, *gray = 0, *edge = 0; 

 

// define a trackbar callback 

void on_trackbar(int h) 

{ 

    cvSmooth( gray, edge, CV_BLUR, 3, 3, 0, 0 ); 

    cvNot( gray, edge ); 

 

    // Run the edge detector on grayscale 

    cvCanny(gray, edge, 100, 300, 3); 

 

    cvZero( cedge ); 

    // copy edge points 

    cvCopy( image, cedge, edge ); 

 

    cvShowImage(wndname, cedge); 

} 

 

int main( int argc, char** argv ) 

{ 

    char* filename = argc == 2 ? argv[1] : (char*)"fruits.jpg"; 

 

    if( (image = cvLoadImage( filename, 1)) == 0 ) 

        return -1; 

 

    // Create the output image 
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    cedge = cvCreateImage(cvSize(image->width,image->height), IPL_DEPTH_8U, 3); 

 

    // Convert to grayscale 

    gray = cvCreateImage(cvSize(image->width,image->height), IPL_DEPTH_8U, 1); 

    edge = cvCreateImage(cvSize(image->width,image->height), IPL_DEPTH_8U, 1); 

    cvCvtColor(image, gray, CV_BGR2GRAY); 

 

    // Create a window 

    cvNamedWindow(wndname, 1); 

 

    // create a toolbar 

    // cvCreateTrackbar(tbarname, wndname, &edge_thresh, 100, on_trackbar); 

 

    // Show the image 

    on_trackbar(0); 

 

    // Wait for a key stroke; the same function arranges events processing 

    cvWaitKey(0); 

    cvReleaseImage(&image); 

    cvReleaseImage(&gray); 

    cvReleaseImage(&edge); 

    cvDestroyWindow(wndname); 

 

    return 0; 

} 

 

#ifdef _EiC 

main(1,"edge.c"); 

#endif 

 

Figura 33: Algoritmo para detecção dos contornos 

5.2.2.1 Resultados 

 

Figura 34 – Resultado para detecção dos contornos 
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5.3 TABELA DE RESULTADOS 

A tabela abaixo apresenta os resultados obtidos com a aplicação dos Haar 

Cascades descritos acima de 100 imagens com face, olhos, nariz e boca nas 

condições consideradas adequadas a este trabalho e descritas no item Erro! Fonte 

de referência não encontrada.. E 200 imagens negativas. 

Tabela 2 – Resultados dos Haar Cascade 

Objeto Taxa de Detecção Taxa de Falsos-Positivos 

Face 87% 19,5% 

Olhos 61% 24,5% 

Nariz 63% 32% 

Boca 48% 29,5% 

 

A base de fotos positivas foram fotos feitas para o trabalho quando 

detalhamos os AU‟s. As fotos negativas foram tiradas de banco de dados da internet 

(flickr.com) 
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6 TRATAMENTO DA IMAGEM EMOTIVA 

O tratamento da imagem para obter os dados necessários para identificação 

da emoção expressa, ocorre em diversas fases. É um processo em serie que ocorre 

separadamente para cada área da face onde os Au‟s se caracterizam (boca, olhos e 

sobrancelhas), a saída de uma função adaptativa é a entrada da seguinte, tendo 

finalmente uma matriz com as coordenadas cartesianas dos 18 pontos desejados 

para a interpretação. 

A figura abaixo ilustra esquematicamente a sequencia realizada sobre a 

imagem para garantir um resultado conforme esperado e possibilitar uma análise 

através da rede treinada em MatLab: 

 

Figura 35 – Processo de tratamento das imagens 

 

O programa de detecção de emoções tem como entrada duas imagens; a 

primeira apresentando o indivíduo em questão com aparência facial neutra, a 

segunda mostrando a emoção que deverá ser descrita. Nessa secção 



63 

 

desenvolveremos as características e necessidades de cada uma das funções 

aplicadas sobre a imagem emotiva resultando nas coordenadas desejadas. 

A rede neural utilizada nesse programa precisa de dados coerentes e 

constantes relacionando a imagem emotiva à neutra, para isso é necessário 

identificar corretamente a posições de 18 pontos da face utilizados para 

parametrização das razões de entrada da rede, (as razões serão discutidas na 

secção ‎7). O tratamento que será descrito é preciso para que as coordenadas 

informadas sejam as mais corretas possível.  

Devido a diferenças de iluminação, cor, profundidade e textura das partes do 

rosto optamos por considerar thresholds distintos em cada um dos casos, assim 

primeiramente detectamos a localização das áreas desejadas para então separá-las 

e processar cada uma separadamente. O método de deteçao de partes da face 

utilizado é o descrito previamente baseado na teoria de Viola-Jones(VIOLA e JONES, 

2001).  

6.1 LIMIAR 

Com apenas a área em questão sendo analisada (saída da funçao cvDetect), 

utilizamos a aplicação de um threshold sobre a imagem para isolar os contornos 

desnecessários daqueles que descrevem os pontos extremos dos features 

analisados. 

A função de threshold escolhida (Threshold Binary), elimina categoricamente 

qualquer pixel da imagem que possua valor menor que o determinado e torna 

máximo aqueles cujo valor é maior ou igual. As diferentes opções de threshold 

podem ser vistas na figura abaixo, esses gráficos ilustram o que ocorre com cada 

pixel dependendo de sua intensidade relaciona diretamente ao parâmetro de entrada.  
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Figura 36 – Limiar FONTE: (BRADSKY e KAEHLER) 

A matriz de entrada da função cvThreshold, deve ser uma que descreve a 

imagem em grayscale, isso significa que cada posição da matriz indica um pixel e o 

valor contido nessa posição descreve a grau de cinza daquele pixel, de zero a cem 

(preto a branco). A imagem apresentada abaixo é o resultado da função aplicada à 

uma foto da face inteira (figura abaixo). Como é possivel ver, temos uma imagem 

preta com linhas brancas que indicam os contornos que possuem pixels com o valor 

indicado pelo threshold, que pode ser alterado pelo trackbar acima da figura.  

 

Figura 37 – Imagem com ajuste de Limiar 
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O threshold correto indica o melhor limite para separar cada característica do 

resto da face e por isso deve ser cuidadosamente escolhido pelo usuário 

individualmente para os features, ele será utilizado na próxima etapa para definição 

do vetor de coordenadas do contorno. 

 

6.2 CONTOUR 

Neste caso, a função cvContour necessita como entrada, além da subimagem 

o valor de threshold sobre o qual os contornos serão detectados. Com essas 

informações, é possível vetorizar as coordenadas dos pontos que compões cada 

contorno presente na imagem analisada.  

 

 

 

 

 

 

 

 

 

 

 

 

Figura 38 – Algoritmo para vetorização dos contornos 

contador = 0 

maxnum = 0 

for (coluna){ 

num = 0 

 for (linha){ 

    if (pixel == branco ){ 

 contornos [contador(num)][2*num]=coluna 

 contornos[contador(num)][2*num+1]=linha 

 contador(num) ++ 

 num++} 

 } 

If(num>maxnum) 

     maxnum = num 

} 
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A figura acima apresenta um algoritmo simplificado do método utilizado para 

detecção da posição dos pixels, e salvá-los no vetor correspondente à cada linha 

desenhada na imagem. Varremos todos os pixels desejados, coluna-linha, e quando 

ele identificado como branco e, portanto faz parte da linha, guardamos sua 

coordenada (x,y) para depois analisar o AU presente. Naturalmente, existem mais de 

uma linha presentes na subimagem e relevantes à característica em análise, o 

algoritmo portanto permite guardarmos cada uma delas individualmente e também 

retorna o número total de linhas vetorizadas (maxnum).  

Como resultado temos os contornos localizados, identificados abaixo em 

vermelho e azul (in and out – essa é uma separação entre os vetores para facilitar 

sua identificação, um contorno demonstra dentro de qual outro contorno eles se 

encontra e quais são os contornos que estão dentro dele), e as coordenadas 

informadas para que possamos posteriormente equacioná-las e decifrar a emoção 

expressa. 

 

Figura 39 – Resultado para detecção dos contornos e suas respectivas coordenadas  
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7 PARÂMETROS COMPARATIVOS PARA DETERMINAÇÃO 

EMOCIONAL 

Para a determinação emocional, utilizamos 18 parâmetros intimamente 

ligados aos AU‟s apresentados previamente que descrevem as aparências faciais. 

Os parâmetros relacionam os principais features faciais como boca, olhos e 

sobrancelhas, sendo separados da seguinte forma: 

Boca – 4 Parâmetros. 

Olhos – 2 Parâmetros para cada. 

Sobrancelhas – 3 Parâmetros para cada. 

Relação Olho-Sobrancelha – 2 Parametros para cada. 

Para o treinamento da base de dados e calibração da imagem neutra, o proprio 

usuario define os 18 pontos necessários. Isso é feito atraves de um programa que 

solicita ao usuario que clique sobre cada posição separadamente e na ordem correta 

descrita sobre a imagem. Esse método foi escolhido por permitir maior acuracidade 

dos pontos e controle do usuário. A figura abaixo demonstra a imgem já com os 18 

pontos selecionados e suas coordenadas descritas na janela ao lado. 

          

Figura 40 – Determinação manual dos pontos de interesse e suas respectivas 

coordenadas 
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7.1 DESCRIÇÃO DOS PARÂMETROS 

A figura abaixo, ilustra as medições feitas para obtenção dos parâmetros. As 

medidas são absolutas e relacionam pontos extremos (figura 40) dos features 

principais.  

     

Figura 41 – Parâmetros de avaliação da emoção 

 

(A) – Abertura horizontal da boca, distância entre os extremos dos cantos 

labiais. 

(B) – Abertura vertical da boca, distância entre os extremos superior e inferior 

da boca. 

(C) – Coordenadas do ponto onde as retas que unem os pontos de (A) e (B) 

se cruzam. Utilizamos isso para medir as distâncias horizontal e vertical 

deste ponto (centro) para o extremo superior e esquerdo da boca. 

(D) – Abertura horizontal ocular, distância entre os extremos horizontais do 

olho. 

(E) – Abertura vertical ocular, distância entre os extremos superior e inferior 

do olho. 

(F) – Comprimento horizontal da sobrancelha, distância entre os extremos 

horizontais da sobrancelha. 

(G) – Distância vertical da sobrancelha, distância vertical entre o ponto 

superior da sobrancelha e sua projeção na reta que une os pontos de (F). 
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(H) – Levantamento exterior da sobrancelha, distância entre o ponto exterior 

da sobrancelha e do olho. 

(I) – Levantamento interior da sobrancelha, distância entre o ponto interior da 

sobrancelha e do olho. 

(J) – Distância do ponto superior da sobrancelha, distância entre o ponto 

superior e o externo esquerdo da sobrancelha. 

7.2 NORMALIZAÇÃO 

O valor utilizado como entrada da rede neural é sempre a razão do valor 

medido na foto emotiva sobre o da foto neutra. Isso é importante para garantir uma 

coerência relativa entre os valores considerados, sendo sempre em relação à 

imagem neutra do indivíduo em questão. Optamos por uma normalização simples 

pois não existia necessidade de uniformizar os valores de outra forma. 

Também foi considerado um parâmetro adicional (K), que mede a distância 

entre dois pontos da face que não sofram deformação pela manifestação da emoção. 

Esse parâmetro foi utilizado como fator de correção para alterações de distância e 

pequenos desvios de angulação entre as fotos neutra e emotiva. 
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8 REDES NEURAIS ARTIFICIAIS 

Uma maneira eficiente de resolver problemas complexos é seguindo o lema 

“dividir para conquistar”. Um sistema complexo pode ser decomposto em diversos 

elementos mais simples para ser possível entendê-lo.  Além disso, elementos mais 

simples também podem ser unidos para compor um sistema mais complexo. A 

aplicação de redes neurais é um dos jeitos de se fazer essa “decomposição”. 

Uma rede é caracterizada pelos seguintes componentes: um conjunto de nós 

e conexões entre os nós. Os nós podem ser considerados unidades computacionais 

que recebem dados, processam e entregam dados de saída. Este processo pode 

ser bem simples como um função de soma, ou pode conter uma rede dentro do 

próprio nó. As conexões determinam o fluxo de informação entre os nós, podem ser 

unidirecionais ou bidirecionais. 

A especificidade das Redes Neurais Artificiais é que elas veem os nós como 

neurônios artificiais. Um neurônio artificial é um modelo computacional inspirado nos 

neurônios reais. Neurônios biológicos recebem os sinais através de sinapses 

localizadas nos dendritos. Quando os sinais recebidos são fortes o suficiente 

(superam um certo limite pré-estabelecido), o neurônio é ativado e emite um sinal 

através do axônio. Este sinal pode ser enviado através de outra sinapse e pode 

ativar outros neurônios também 

 

Figura 42 –Sinapse no sistema nervoso, FONTE: (PAKNIKAR, 2008) 
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A complexidade de neurônios reais é bastante abstrata quando modelamos 

neurônios artificiais. Estes, basicamente consistem de entradas (como sinapses), 

que são multiplicadas por pesos (força dos respectivos sinais) e depois computadas 

por uma função matemática que determina a ativação do neurônio. Outra função 

calcula a saída do neurônio artificial. Uma RNA combina neurônios artificiais para 

processar a informação. 

Quanto maior o peso de um neurônio artificial, a entrada dele será 

multiplicada por um número mais forte. Pesos também podem ser negativos, pode-

se dizer que o sinal é inibido com um peso negativo. Dependendo dos pesos, os 

cálculos de um neurônio serão diferentes. Ajustando os pesos de um neurônio 

artificial, podemos obter as saídas desejadas a partir das entradas fornecidas. Mas 

quando temos uma RNA de centenas de milhares de neurônios é bastante complexo  

e para isso existem os algoritmos de treino e aprendizado da rede neural que 

ajustam esses pesos para que dadas valores de entrada e saídas esperadas, a rede 

é montada com os respectivos pesos. 

 

 

Figura 43 –Modelo típico de um neurônio artificial, FONTE: (PAKNIKAR, 2008) 
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8.1 O ALGORITMO DE APRENDIZADO – RETROPROPAGAÇÃO 

O algoritmo de backpropagtion ou retropropagação é usado em redes neurais 

de camadas com alimentação “frontal”, isto significa que os neurônios artificiais 

estão organizados em camadas e enviam os seus sinais “para frente” e depois os 

erros são propagados “para trás”. A rede recebe os dados de entrada por neurônios 

na “camada de entrada” e a saída é dada pela “camada de saída”. Podem existir um 

ou mais “camadas escondidas”.  

O algoritmo usa aprendizado supervisionado, ou seja, é provido ao algoritmo 

exemplos de entradas e as respectivas saídas desejadas que a rede deve devolver 

e assim o erro (diferença entre o valor esperado e o valor que a rede entregou como 

saída) é calculado. O treinamento começa com pesos randômicos e o objetivo é 

ajustar eles iterativamente para que o erro seja mínimo. 

A função de ativação utilizada pelo algoritmo de retropropagação é 

simplesmente a soma ponderada das entradas xi multiplicada pelos pesos wji: 

 

Podemos ver que a ativação depende apenas das entradas e dos pesos. 

Se a função de saída for a função identidade (saída = ativação), o neurônio 

será chamado “linear”, mas o mais comum é utilizar a função sigmoide como saída: 

 

A função sigmoide resulta em 1 para para grandes números positivos, 0,5 

para 0 e -1 para grandes números negativos. Isto permite uma transmissão suave 

entre a saída alta e baixa do neurônio. Verifica-se que a saída depende 

exclusivamente da ativação, que por sua vez depende dos valores das entradas e 

seus respectivos pesos. 



73 

 

O objetivo do processo de treinamento é obter as saídas desejadas dadas 

certas entradas específicas. Já que o erro é a diferença entre a saída atual e a 

desejada, o erro depende dos pesos e portanto o algoritmo ajusta os pesos para 

minimizar o erro. Pode-se definir a função erro da saída de cada neurônio da 

seguinte forma: 

 

Tomamos o quadrado da difernça entre a saída obtida e a desejada para que 

seja sempre positivo. O erro da rede será simplesmente a soma destes erros: 

 

O algoritmo calcula em seguida a dependência dos erros para as entradas, 

saídas e pesos. E os pesos são ajustados usando o método gradiente descendente: 

 

Esta fórmula pode ser interpretada da seguinte maneira: o ajuste de cada 

peso (Δwji) será o negativo da constante η multiplicada pela dependência do peso 

anterior no erro da rede. O tamanho do ajuste dependerá de η e da contribuição de 

cada peso para o erro da função. Isto é, se o peso contribui fortemente para o erro, o 

ajuste será maior do que para os pesos que contribuem menos para o erro. A 

equação acima é utilizada até que se ache pesos apropriados para minimizar o erro. 

Portanto o objetivo do algoritmo é encontrar a derivada do E em função dos 

wji. Primeiramente calcula-se quanto o erro varia com a saída: 
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E em seguida calcula-se quanto que a saída depende da ativação (que 

depende dos pesos): 

 

Obtemos então: 

 

E o ajuste para cada peso é: 

 

Pode-se utilizar esta última expressão para redes de duas camadas, 

entretanto para redes com mais camadas é necessário fazer algumas considerações. 

Se queremos ajustar os pesos (chamaremos de vik) de uma camada anterior, antes 

é necessário calcular como o erro depende não só do peso mas da entrada da 

camada anterior. Portanto é necessário alterar o xi com wji nas equações acima. 

Também é necessário verificar como o erro depende do ajuste de vjk, portanto: 

 

Aonde: 



75 

 

 

E assumindo que há entradas uk no neurônio com vik 

 

Para adicionar mais camadas, basta calcular como o erro depende das 

entradas e dos pesos da primeira camada. 
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8.2 TREINAMENTO DA REDE NO MATLAB® 

Utilizamos o programa Matlab para treinar a rede neural utilizando o manual 

do Toolbox de Redes Neurais como guia (DEMUTH, BEALE e HAGAN, 2008) 

Primeiramente tratamos a saída do programa em OpenCV  no Excel para 

exportar ao Matlab 

 

Figura 44 –Excel com os dados do OpenCV 

No Matlab criamos duas matrizes: EmotionInputs com as colunas 

representando os parâmetros e as linhas as fotos lidas e EmotionTargets uma matriz 

onde as colunas representam as emoções tendo o valor “1” na emoção desejada e 

“0” nas outras colunas, as linhas também representam as fotos lidas. 

Utilizamos o GUI para redes neurais de reconhecimento de padrões nprtool: 

Basicamente temos que inputar as variáveis que representam os dados para 

criar a rede neural e escolher o número de Camadas Escondidas. 
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Figura 45 –Tela inicial da criação da rede 

 

Figura 46 –Escolha das variáveis de entrada 
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Figura 47 –Escolha do número de camadas escondidas. 

 

 
Figura 48 –Treinamento utilizando retropropagação 
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9 RESULTADOS FINAIS PARA DETECÇÃO DE EMOÇÃO 

9.1 RESULTADO DA REDE NEURAL PARA A BASE DE DADOS DE 

TREINAMENTO 

Após a criação da rede neural e feito o seu treinamento o Matlab testa todos 

os dados inputados para a rede para avaliar o erro da mesma. 

Na figura abaixo as linhas das atrizes são as emoções de Saída da rede e as 

colunas são as emoções esperadas para os dados de entrada. Os quadrados verdes 

são os identificados corretamente e os vermelhos o inverso. A ordem das emoções é: 

Raiva, Medo, Felicidade, Neutro, Tristeza e Surpresa. 

Podemos ver na figura que a média geral do erro das variáveis de entrada foi 

de 3,4% após algumas iterações de treinamento e escolha do número de camadas 

escondidas da rede neural. Vale ressaltar que os pontos para cálculo dos 

parâmetros caracterizadores de emoção nesta etapa de treinamento foram tomados 

manualmente, na próxima sessão apresentamos os resultados do programa final 

baseado na detecção dos features e nos seus contornos vetorizados. 



80 

 

  

Figura 49 –Matrizes – “Confusion” que representam os acertos e erros da rede para 

cada conjunto de imagens 
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9.2 RESULTADOS PROGRAMA FINAL 

A tabela abaixo mostra os resultados para os testes efetuados pelo 

programa final após a rede neural ter sido construída utilizando imagens do 

banco de dados Cohn-Kanade entretanto de um grupo diferente de fotos das 

utilizadas para o treinamento. 

 

 Emoção Detectada pela rede Neural 

Raiva Medo Feliz Neutro Triste Surpreso Total 

E
m

o
ç
ã

o
 A

p
re

s
e
n

ta
d

a
 

Raiva 7   1 2  10 

Medo 2 5   1 2 10 

Feliz   8 1  1 10 

Neutro 2 1 1 4 2  10 

Triste 2   2 6  10 

Surpreso  2 1   7 10 

Total 13 8 10 8 11 10 61,7% 

Figura 50 –Matriz de resultados programa final 
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10 ANÁLISE DOS RESULTADOS 

10.1 PARÂMETROS COMPARATIVOS PARA DETERMINAÇÃO 

EMOCIONAL 

10.1.1 Abertura Horizontal da Boca 

De acordo com o esperado é possível ver pela figura abaixo que o R1 pode 

ser usado para identificar parcialmente algumas emoções. Sua presença pode ser 

notada principalmente para felicidade, medo e tristeza, onde há uma abertura 

horizontal da boca, e para surpresa onde o efeito é o contrário. 

 

Figura 51 –Média e desvio padrão do R1 para cada emoção 
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10.1.2 Abertura Vertical da Boca 

Para o parâmetro R2 o efeito é contrário ao do acima descrito, nesse caso 

uma grande alteração pode ser percebida para surpresa. 

 

Figura 52 –Média e desvio padrão do R2 para cada emoção 

 

10.1.3 Distância Horizontal do centro da boca 

A distância horizontal do ponto central da boca, permite uma análise similar à 

percebida no R1 (abertura horizontal). Neste caso, novamente felicidade, medo e 

tristeza apresentam grandes distorções. 
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Figura 53 –Média e desvio padrão do R3 para cada emoção 

 

10.1.4 Distância Vertical do centro da boca 

O gráfico abaixo permite perceber que o parâmetro R4 apresenta um efeito 

combinado da abertura oral com o movimento elevatório das laterais da boca. Esse 

desvio é perceptível quando comparamos a distância vertical entre o centro da boca 

(onde a reta que une as extremidades horizontais cruza a reta das extremidades 

verticais) com o ponto labial superior. Assim temos um alto valor para surpresa 

(acentuado pela abertura da boca) e tristeza (causado pelo movimento para baixo 

dos cantos da boca), no caso da alegria o efeito é oposto. 
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Figura 54 –Média e desvio padrão do R4 para cada emoção 

 

10.1.5 Abertura horizontal ocular 

Percebemos pelo gráfico abaixo que este parâmetro possui pouca influência 

na caracterização das emoções, sendo pouco necessário em trabalhos futuros. 

 

Figura 55 –Média e desvio padrão do R5 para cada emoção 
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Figura 56 –Média e desvio padrão do R7 para cada emoção 

 

10.1.6 Abertura vertical ocular  

Para emoções como surpresa há uma abertura expressiva dos olhos e o 

efeito inverso para raiva. 

 

Figura 57 –Média e desvio padrão do R6 para cada emoção 
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Figura 58 –Média e desvio padrão do R8 para cada emoção 

 

10.1.7 Comprimento horizontal da sobrancelha 

Novamente vemos pelos gráficos abaixo que estes parâmetros pouco 

influenciam na determinação da emoção. 

 

Figura 59 –Média e desvio padrão do R9 para cada emoção 
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Figura 60 –Média e desvio padrão do R11 para cada emoção 

 

10.1.8 Comprimento vertical da sobrancelha 

Conforme esperado pela teoria dos FACS (EKMAN, FRIESEN e HAGER, 

2002) o comprimento vertical da sobrancelha aumenta para surpresa e felicidade e 

diminui para raiva.  

 

Figura 61 –Média e desvio padrão do R10 para cada emoção 
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Figura 62 –Média e desvio padrão do R12 para cada emoção 

 

10.1.9 Distância do ponto superior da sobrancelha 

Há um deslocamento horizontal do ponto superior da sobrancelha para a raiva 

e para surpresa, nos outros casos o parâmetro permanece próximo à constante. 

 

Figura 63 –Média e desvio padrão do R13 para cada emoção 
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Figura 64 –Média e desvio padrão do R16 para cada emoção 

 

10.1.10 Levantamento exterior da sobrancelha 

Pode-se perceber que há um levantamento considerável da sobrancelha para 

surpresa. 

 

Figura 65 –Média e desvio padrão do R14 para cada emoção 
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Figura 66 –Média e desvio padrão do R18 para cada emoção 

 

10.1.11 Levantamento interior da sobrancelha 

O efeito causado à parte interior da sobrancelha é similar àquele apresentado 

para a porção externa, no entanto existe também uma separação entre olho e 

sobrancelha para medo e tristeza e uma aproximação no caso de raiva. 

 

Figura 67 –Média e desvio padrão do R15 para cada emoção 
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Figura 68 –Média e desvio padrão do R17 para cada emoção 
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10.2 ANÁLISE DOS RESULTADOS DE DETECÇÃO DA EMOÇÃO 

Atingimos com o programa desenvolvido um nível satisfatório de 

reconhecimento emocional, aproximadamente 62% conforme visto na secção 

anterior. Este valor está próximo dos valores encontrados na literatura para 

softwares de semelhante atuação e é cerca de quatro vezes maior do que a escolhe 

arbitrária de uma das seis emoções, melhorando a probabilidade de acerto para um 

programa semiautomatizado. 

Identificamos que grande parte dos erros é causada por condições 

específicas das imagens, como por exemplo luminosidade, que dificultam a correta 

vetorização dos contornos dos features necessários. 

 Conforme esperado as emoções que apresentam características únicas 

(entre os AU‟s considerados) tiveram maior índice de deteção correta. Esse é o caso 

de: 

 Felicidade – parâmetro negativo ou nulo de distâcia vertical entre 

„centro‟ da boca e ponto labial superior (80% de acerto). 

 Surpresa – aumento significante dos parâmetros de distancia vertical 

da boca e entre olhos e sobrancelhas (70% de acerto). 

 Medo – aumento combinado do tamanho da cavidade oral, horizontal e 

vertical (70% de acerto). 

 

10.3 LIMITAÇÕES 

O trabalho realizado possui algumas limitações que podem ser minimizadas 

em projetos futuros: 

 Exigência de ajuste manual do threshold – Devido a importância do 

limite de threshold para correta determinação dos contornos optamos 

por realizar um ajuste manual do mesmo. Isto é um problema, pois 

impede a automação completa do software e pode interferir no 

resultado. Uma solução seria fazer o tratamento da luminosidade das 

fotos para cada parte do rosto e assim implementar detecção 

automática do threshold necessário para melhor aquisição dos 

contornos da face. 

 Exigência de inputar duas fotos para a detecção – Esta é uma decisão 

de implementação do projeto visando melhores resultados de detecção 

da emoção. 
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 O programa perde acurácia caso as imagens apresentem grandes 

inclinações ou que o rosto esteja parcialmente coberto por acessórios 

ou cabelo.   
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11 CONCLUSÕES 

O software proposto neste trabalho consegue efetivamente classifica fotos de 

faces humanas nas seis emoções tratadas (Raiva, Medo, Felicidade, Neutro, 

Tristeza e Surpresa). Considerando o número de emoções que escolhemos detectar 

e que a base de dados de testes é inteiramente diferente da base de dados de 

treinamento da rede neural a taxa de detecção das emoções é satisfatória 

comparando com os trabalhos disponíveis na literatura sobre o assunto. 

Os dezoito parâmetros escolhidos são suficientes para classificar as fotos nas 

emoções selecionadas, possibilitando que qualquer individuo consiga classificar sua 

emoção exigindo no mínimo duas imagens sendo uma neutra e uma com a emoção 

a ser detectada. 

 A utilização de parâmetros comparativos entre imagem emotiva e neutral 

facilita a detecção da emoção em comparação com o método proposto inicialmente 

de analisar matematicamente os vetores dos contornos das faces. Entretanto exige 

que tenhamos as duas imagens disponíveis. 

 

11.1  TRABALHOS FUTUROS 

A principal mudança deve ser a automação completa do programa através do 

tratamento da luminosidade conforme descrito acima. 

Também é bastante interessante incluir parâmetros binários para auxilias o 

reconhecimento da emoção, como por exemplo, se há enrugamento da testa, se os 

dentes estão visíveis, enrugamento da área próxima ao nariz, entre outros. 

Outra importante melhoria seria a integração do software em C++ com o 

Matlab, podendo talvez implementar as redes neurais no ambiente C++. 

Para reduzir a ambiguidade de alguns resultados apresentados, pode-se 

estudar a implementação de várias redes neurais em série com enfoques distintos e 

treinamentos específicos. 
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13 ANEXO I – PERMISSÃO PARA UTILIZAR O DATABASE COHN-

KANADE(T. KANADE, 2000) 
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14 ANEXO II – PROGRAMA FINAL OPENCV 

#include "cv.h" 

#include "highgui.h" 

#include "math.h" 

#include <cstdlib> 

#include <iostream> 

#include <string> 

#include <stdio.h> 

#include <fstream> 

#include <sstream> 

#include <cstring> 

 

using namespace std; 

 

#define MAX_PARAM 19 

#define CVX_RED  CV_RGB(0xff,0x00,0x00) 

#define CVX_GREEN CV_RGB(0x00,0xff,0x00) 

#define CVX_BLUE CV_RGB(0x00,0x00,0xff) 

 

int X[MAX_PARAM]; 

int Y[MAX_PARAM]; 

int J = 0;  

int K = 2; 

 

String cascadeName = 

"../../data/haarcascades/boca.xml"; 

String nestedCascadeName = 

"../../data/haarcascades/boca.xml"; 

 

IplImage*      g_image     = NULL; 

IplImage*      g_gray      = NULL; 

IplImage*      g_gray2     = NULL; 

IplImage*      src         = NULL; 

int            g_thresh    = 150; 

CvMemStorage*  g_storage   = NULL; 

 

 

 /* função que ativa o trackbar para escolha e aplicação do threshold 

*/ 

 void on_trackbar(int) { 

  if( g_storage==NULL ) { 

     

    g_gray = cvCreateImage( cvGetSize(g_image), 8, 1 ); 

 g_gray2 = cvCreateImage( cvSize(640,480), 8, 1 ); 

    g_storage = cvCreateMemStorage(0); 

  } else { 

    cvClearMemStorage( g_storage ); 

  } 

   

  CvSeq* contours = 0; 

 

  cvCvtColor( g_image, g_gray, CV_BGR2GRAY ); 

   

  cvThreshold( g_gray, g_gray, g_thresh, 255, CV_THRESH_BINARY ); 

  cvFindContours( g_gray, g_storage, &contours ); 

  cvZero( g_gray ); 

  cvResize(g_gray,g_gray2,CV_INTER_CUBIC); 
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  if( contours ) 

    cvDrawContours(  

      g_gray2,  

      contours,  

      cvScalarAll(255), 

      cvScalarAll(255),  

      100  

    ); 

  cvShowImage( "Contours", g_gray2 ); 

} 

 

 /* função para determinação do ponto máximo em um vetor */ 

 int maximumValue( int vetor[]) 

{ 

  int length = 100000;  // tamanho máximo de um contorno 

     int max = vetor[0];       // max recebe o primeiro elemento 

  int pos = 0; 

 

     for(int i = 1; i<length; i++) 

     { 

   if(vetor[i] > max){ 

             max = vetor[i]; 

    pos=i; 

   } 

     } 

     return pos;                // retorna a posição no vetor do 

ponto maximo  

} 

 

  /* função para determinação do ponto mínimo em um vetor */ 

  int minimumValue( int vetor[]) 

{ 

  int length = 100000;   

     int min = vetor[0];   

  int pos = 0; 

 

     for(int i = 1; i<length; i++) 

     { 

  if(vetor[i] < min && vetor[i]!=-1){ 

   min = vetor[i]; 

   pos = i; 

   } 

     } 

     return pos;                // retorna a posição no vetor do 

ponto minimo 

} 

 

  /* função que procura o valor mais proximo do pedido no vetorx, e 

retorna a posição que possua o maior valor no vetory */  

  int findMax( int vetorx[], int vetory[], int valor) 

  { 

   int length = 100000; 

   int max = 0; 

   int pos = -1; 

   for( int i=0; i<length;i++){ 

    /* valor informado dentro do intervalo determinado por 

vetorx[i-1] e vetorx[i], e vetory[i] é maximo */ 

    if (((vetorx[i-1]<valor && vetorx[i]>=valor) || (vetorx[i-

1]>valor && vetorx[i]<=valor)) && vetory[i]>max){ 
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      max=vetory[i]; 

      pos=i; 

    } 

   } 

   return pos; // retorna posição do vetor em que o desejado 

ocorre 

  } 

 

  /* função que procura o valor mais proximo do pedido no vetorx, e 

retorna a posição que possua o menor valor no vetory */  

  int findMin( int vetorx[], int vetory[], int valor) 

  { 

   int length = 100000; 

   int min = 10000; 

   int pos = -1; 

   for( int i=0; i<length;i++){ 

    /* valor informado dentro do intervalo determinado por 

vetorx[i-1] e vetorx[i], e vetory[i] é minimo */ 

    if (((vetorx[i-1]<valor && vetorx[i]>=valor) || (vetorx[i-

1]>valor && vetorx[i]<=valor)) && vetory[i]<min && vetory[i]!=-1){ 

      min=vetory[i]; 

      pos=i; 

    } 

   } 

   return pos; // retorna posição do vetor em que o desejado 

ocorre 

  } 

   

  /* função que ativa o funcionamento do mouse sobre a imagem e 

guarda as posições quando o botào direito é clicado */ 

  void mouseHandler(int event, int x, int y, int flags, void* param) 

{ 

    IplImage* img1; 

    CvFont    font; 

    //uchar*    ptr; 

    char      label[60]; 

  

    img1 = (IplImage*) param; 

   // img1 = cvCloneImage(img0); 

    

    cvInitFont(&font, CV_FONT_HERSHEY_PLAIN, .8, .8, 0, 1, 8); 

    // pede para clicar nos 18 pontos 

    if (event == CV_EVENT_LBUTTONDOWN && J < MAX_PARAM) 

    { 

  switch (J) { 

   case 0: 

    sprintf(label,"Clique no ponto esquero da 

boca");break; 

   case 1: 

    sprintf(label,"Clique no ponto direito da 

boca");break; 

   case 2: 

    sprintf(label, "Clique no ponto superior da 

boca");break; 

   case 3: 

    sprintf(label,"Clique no ponto inferior da 

boca");break; 

   case 4: 

    sprintf(label,"Clique no ponto esquero do olho 

esquerdo");break; 
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   case 5: 

    sprintf(label,"Clique no ponto direito do olho 

esquerdo");break; 

   case 6: 

    sprintf(label,"Clique no ponto superior do olho 

esquero");break; 

   case 7: 

    sprintf(label,"Clique no ponto inferior do olho 

esquerdo");break; 

   case 8: 

    sprintf(label,"Clique no ponto esquero do olho 

direito");break; 

   case 9: 

    sprintf(label,"Clique no ponto direito do olho 

direito");break; 

   case 10: 

    sprintf(label,"Clique no ponto superior do olho 

direito");break; 

   case 11: 

    sprintf(label,"Clique no ponto inferior do olho 

direito");break; 

   case 12: 

    sprintf(label,"Clique no ponto esquero da 

sombrancelha esquerdo");break; 

   case 13: 

    sprintf(label,"Clique no ponto direito da 

sombrancelha esquerdo");break; 

   case 14: 

    sprintf(label,"Clique no ponto superior da 

sombrancelha esquero");break; 

   case 15: 

    sprintf(label,"Clique no ponto esquero do da 

sombrancelha direito");break; 

   case 16: 

    sprintf(label,"Clique no ponto direito da 

sombrancelha direito");break; 

   case 17: 

    sprintf(label,"Clique no ponto superior da 

sombrancelha direito");break; 

   /* case 18: 

    sprintf(label,"Clique na orelha esquerda");break; 

   case 19: 

    sprintf(label,"Clique na orelha direita");break; */  

   default: 

    sprintf(label,"Aperte ENTER para sair");break; 

  } 

  // desenha um retangulo para escrever o texto  

     cvRectangle(img1,cvPoint(0,0),cvPoint(500,15),CV_RGB(255, 0, 

0),CV_FILLED,8, 0); 

     cvPutText(img1,label,cvPoint(0, 12),&font,CV_RGB(255, 255, 0)); 

  /* read pixel */ 

        //ptr = cvPtr2D(img1, y, x, NULL); 

  

        /* 

         * display the BGR value 

         */ 

  //cvShowImage("img", img1); 

  // guarda e imprimi as coordenadas 

        X[J]=x; 

  Y[J]=y; 
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  printf("J %d, X=%d Y=%d \n",J, X[J],Y[J]); 

  

  // desenha um retangulo vermelho pequeno sobre o ponto clicado 

        cvRectangle( 

            img1, 

            cvPoint(x-1, y-1), 

            cvPoint(x+1, y+1), 

            CV_RGB(255, 0, 0), 

            CV_FILLED, 

            8, 0 

        ); 

  

         // printf("\n\n a\n\n"); 

        cvShowImage("img", img1); 

  J++; 

  

 } 

} 

 

  /* crop de 1 elipse */ 

   void CircleROI(int x, int y, int largura, int altura) 

 { 

     IplImage* res, * roi; 

  

    /* usage: <prog_name> <image> */ 

 

    res = cvCreateImage(cvGetSize(src), 8, 3); 

    roi = cvCreateImage(cvGetSize(src), 8, 1); 

  

    /* prepare the 'ROI' image */ 

    cvZero(roi); 

  

    /* Note that you can use any shape for the ROI  

    cvCircle( 

        roi, 

        cvPoint(x, y), 

        raio, 

        CV_RGB(255, 255, 255), 

        -1, 8, 0 

    );   

    CvBox2D box; 

 box.center.x = 50; 

 box.center.y =40;  

 box.size.height = 20; 

 box.size.width = 30; 

    cvEllipseBox(roi,box,CV_RGB(255,255,255),-1,8,0);*/ 

 cvEllipse(roi,cvPoint(x,y),cvSize(largura,altura),0,0,360,CV_RGB(255,

255,255),-1,8,0); 

 

    /* extract subimage */ 

    cvAnd(src, src, res, roi); 

  

  

    /* 'restore' subimage */ 

    IplImage* roi_C3 = cvCreateImage(cvGetSize(src), 8, 3); 

    cvMerge(roi, roi, roi, NULL, roi_C3); 

    cvAnd(res, roi_C3, res, NULL); 

 cvSaveImage("img2.jpg",res); 

  

 } 
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   /* crop de 2 elipses */ 

   void CircleROI2(int x1, int y1, int largura1, int altura1,int x2, 

int y2, int largura2, int altura2) 

 { 

     IplImage* res, * roi; 

  

    /* usage: <prog_name> <image> */ 

    

     

 

    res = cvCreateImage(cvGetSize(src), 8, 3); 

    roi = cvCreateImage(cvGetSize(src), 8, 1); 

  

    /* prepare the 'ROI' image */ 

    cvZero(roi); 

  

    /* Note that you can use any shape for the ROI  

    cvCircle( 

        roi, 

        cvPoint(x, y), 

        raio, 

        CV_RGB(255, 255, 255), 

        -1, 8, 0 

    );   

    CvBox2D box; 

 box.center.x = 50; 

 box.center.y =40;  

 box.size.height = 20; 

 box.size.width = 30; 

    cvEllipseBox(roi,box,CV_RGB(255,255,255),-1,8,0);*/ 

 cvEllipse(roi,cvPoint(x1,y1),cvSize(largura1,altura1),0,0,360,CV_RGB(

255,255,255),-1,8,0); 

    

cvEllipse(roi,cvPoint(x2,y2),cvSize(largura2,altura2),0,0,360,CV_RGB(255,25

5,255),-1,8,0); 

    /* extract subimage */ 

    cvAnd(src, src, res, roi); 

  

  

    /* 'restore' subimage */ 

    IplImage* roi_C3 = cvCreateImage(cvGetSize(src), 8, 3); 

    cvMerge(roi, roi, roi, NULL, roi_C3); 

    cvAnd(res, roi_C3, res, NULL); 

 cvSaveImage("img2.jpg",res); 

  

 } 

 

   /* detecta de acordo com os cascades globais e guarda as posições 

no vetor pos */ 

   void detect( int argc, const char** argv, int** pos ) 

{ 

    CvCapture* capture = 0; 

    Mat frame, frameCopy, image; 

    const String scaleOpt = "--scale="; 

    size_t scaleOptLen = scaleOpt.length(); 

    const String cascadeOpt = "--cascade="; 

    size_t cascadeOptLen = cascadeOpt.length(); 

    const String nestedCascadeOpt = "--nested-cascade"; 

    size_t nestedCascadeOptLen = nestedCascadeOpt.length(); 
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    String inputName; 

 

    CascadeClassifier cascade, nestedCascade; 

    double scale = 1; 

 

    for( int i = 1; i < argc; i++ ) 

    { 

        if( cascadeOpt.compare( 0, cascadeOptLen, argv[i], 

cascadeOptLen ) == 0 ) 

            cascadeName.assign( argv[i] + cascadeOptLen ); 

        else if( nestedCascadeOpt.compare( 0, nestedCascadeOptLen, 

argv[i], nestedCascadeOptLen ) == 0 ) 

        { 

            if( argv[i][nestedCascadeOpt.length()] == '=' ) 

                nestedCascadeName.assign( argv[i] + 

nestedCascadeOpt.length() + 1 ); 

            if( !nestedCascade.load( nestedCascadeName ) ) 

                cerr << "WARNING: Could not load classifier cascade 

for nested objects" << endl; 

        } 

        else if( scaleOpt.compare( 0, scaleOptLen, argv[i], 

scaleOptLen ) == 0 ) 

        { 

            if( !sscanf( argv[i] + scaleOpt.length(), "%lf", &scale ) 

|| scale < 1 ) 

                scale = 1; 

        } 

        else if( argv[i][0] == '-' ) 

        { 

            cerr << "WARNING: Unknown option %s" << argv[i] << endl; 

        } 

        else 

            inputName.assign( argv[i] ); 

    } 

 

    if( !cascade.load( cascadeName ) ) 

    { 

        cerr << "ERROR: Could not load classifier cascade" << endl; 

        cerr << "Usage: facedetect [--cascade=\"<cascade_path>\"]\n" 

            "   [--nested-cascade[=\"nested_cascade_path\"]]\n" 

            "   [--scale[=<image scale>\n" 

            "   [filename|camera_index]\n" ; 

        return -1; 

    } 

 

    if( inputName.empty() || (isdigit(inputName.c_str()[0]) && 

inputName.c_str()[1] == '\0') ) 

        capture = cvCaptureFromCAM( inputName.empty() ? 0 : 

inputName.c_str()[0] - '0' ); 

    else if( inputName.size() ) 

    { 

        image = imread( inputName, 1 ); 

        if( image.empty() ) 

            capture = cvCaptureFromAVI( inputName.c_str() ); 

    } 

    else 

        image = imread( "lena.jpg", 1 ); 

 

    cvNamedWindow( "result", 1 ); 
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    if( capture ) 

    { 

        for(;;) 

        { 

            IplImage* iplImg = cvQueryFrame( capture ); 

            frame = iplImg; 

            if( frame.empty() ) 

                break; 

            if( iplImg->origin == IPL_ORIGIN_TL ) 

                frame.copyTo( frameCopy ); 

            else 

                flip( frame, frameCopy, 0 ); 

 

            detectAndDraw( frameCopy, cascade, nestedCascade, scale ); 

 

            if( waitKey( 10 ) >= 0 ) 

                goto _cleanup_; 

        } 

 

        waitKey(0); 

_cleanup_: 

        cvReleaseCapture( &capture ); 

    } 

    else 

    { 

        if( !image.empty() ) 

        { 

            detectAndDraw( image, cascade, nestedCascade, scale ); 

            waitKey(0); 

        } 

        else if( !inputName.empty() ) 

        { 

            /* assume it is a text file containing the 

            list of the image filenames to be processed - one per 

line */ 

            FILE* f = fopen( inputName.c_str(), "rt" ); 

            if( f ) 

            { 

                char buf[1000+1]; 

                while( fgets( buf, 1000, f ) ) 

                { 

                    int len = (int)strlen(buf), c; 

                    while( len > 0 && isspace(buf[len-1]) ) 

                        len--; 

                    buf[len] = '\0'; 

                    cout << "file " << buf << endl; 

                    image = imread( buf, 1 ); 

                    if( !image.empty() ) 

                    { 

                        detectAndDraw( image, cascade, nestedCascade, 

scale ); 

                        c = waitKey(0); 

                        if( c == 27 || c == 'q' || c == 'Q' ) 

                            break; 

                    } 

                } 

                fclose(f); 

            } 

        } 

    } 
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    cvDestroyWindow("result"); 

} 

 

void detectAndDraw( Mat& img, 

                   CascadeClassifier& cascade, CascadeClassifier& 

nestedCascade, 

                   double scale) 

{ 

    int i = 0; 

    double t = 0; 

    vector<Rect> faces; 

    const static Scalar colors[] =  { CV_RGB(0,0,255), 

        CV_RGB(0,128,255), 

        CV_RGB(0,255,255), 

        CV_RGB(0,255,0), 

        CV_RGB(255,128,0), 

        CV_RGB(255,255,0), 

        CV_RGB(255,0,0), 

        CV_RGB(255,0,255)} ; 

    Mat gray, smallImg( cvRound (img.rows/scale), 

cvRound(img.cols/scale), CV_8UC1 ); 

 

    cvtColor( img, gray, CV_BGR2GRAY ); 

    resize( gray, smallImg, smallImg.size(), 0, 0, INTER_LINEAR ); 

    equalizeHist( smallImg, smallImg ); 

 

    t = (double)cvGetTickCount(); 

    cascade.detectMultiScale( smallImg, faces, 

        1.1, 2, 0 

        //|CV_HAAR_FIND_BIGGEST_OBJECT 

        //|CV_HAAR_DO_ROUGH_SEARCH 

        |CV_HAAR_SCALE_IMAGE 

        , 

        Size(30, 30) ); 

    t = (double)cvGetTickCount() - t; 

    printf( "detection time = %g ms\n", 

t/((double)cvGetTickFrequency()*1000.) ); 

    for( vector<Rect>::const_iterator r = faces.begin(); r != 

faces.end(); r++, i++ ) 

    { 

        Mat smallImgROI; 

        vector<Rect> nestedObjects; 

        Point center; 

  Point up; 

  Point down; 

  up.x=150; 

  up.y=130; 

  down.x=220; 

  down.y=180; 

        Scalar color = colors[i%8]; 

        int radius; 

        center.x = cvRound((r->x + r->width*0.5)*scale); 

        center.y = cvRound((r->y + r->height*0.5)*scale); 

        radius = cvRound((r->width + r->height)*0.25*scale); 

  printf("x=%d\n y=%d\n r=%d\n",center.x ,center.y,radius); 

  //circle( img, center, radius, color, 3, 8, 0 ); 

  rectangle(img, up, down, color, 1, 8, 0);   

        if( nestedCascade.empty() ) 

            continue; 
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        smallImgROI = smallImg(*r); 

        nestedCascade.detectMultiScale( smallImgROI, nestedObjects, 

            1.1, 2, 0 

            //|CV_HAAR_FIND_BIGGEST_OBJECT 

            //|CV_HAAR_DO_ROUGH_SEARCH 

            //|CV_HAAR_DO_CANNY_PRUNING 

            |CV_HAAR_SCALE_IMAGE 

            , 

            Size(30, 30) ); 

  /*/    for( vector<Rect>::const_iterator nr = nestedObjects.begin(); 

nr != nestedObjects.end(); nr++ ) 

        { 

            center.x = cvRound((r->x + nr->x + nr->width*0.5)*scale); 

            center.y = cvRound((r->y + nr->y + nr->height*0.5)*scale); 

            radius = cvRound((nr->width + nr->height)*0.25*scale); 

            circle( img, center, radius, color, 3, 8, 0 ); 

        } 

   */ }  

    // cv::imshow( "result", img );     

} 

 

   int main(int argc, char** argv) 

{ 

    IplImage* imgneutra; 

    IplImage* img_8uc1 = NULL; 

 float M[2][MAX_PARAM]; 

 float N[2][MAX_PARAM]; 

 float R[MAX_PARAM]; 

 float m1; 

 float m2; 

 float n1; 

 float n2; 

 float xm; 

 float xn; 

 float ym; 

 float yn; 

 float r; 

 M[0][0]=0; 

 N[0][0]=0; 

 M[1][0]=0; 

 N[1][0]=0; 

 const char nome[100] = "Sair"; 

 int flag = 0; 

 fstream filestr; 

 int emocao = 0; 

 int Maior[2][100000]; 

 int Segunda[2][100000]; 

 int vetorx[100000]; 

 int vetory[100000]; 

 int maxelem=0; 

 int pos; 

 int cont; 

 int meio; 

    int posboca[4]; 

 int posolho1[4]; 

 int posolho2[4]; 

 int posobra1[4]; 

 int posobra2[4]; 
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 /* comentários para a parte de definição dos pontos desejados foram 

feitos somente para a parte da boca,  

    porém o programa apenas repete a mesma lógica para as outras 

regiões */ 

    printf("\n-------------------------------------------------------

-------------\n Insira a imagem neutra ou digite ''Sair'' \n --------------

------------------------------------------------------------------------

\n"); 

 scanf("%s",nome); 

 if (nome == "Sair"){ 

  printf("Saiu!"); 

  return 0; 

  } 

 else{ 

    /* load imagem */ 

    imgneutra= cvLoadImage(nome, 1); 

  

  

    /* checa para ver se imagem existe */ 

    assert(imgneutra); 

  

    cvNamedWindow("img", 1); 

 J=0; 

 /* chama função de seleção manual dos 18 pontos de interesse */  

    cvSetMouseCallback("img", mouseHandler, (void*)imgneutra); 

   

    cvWaitKey(0); 

  

    cvDestroyAllWindows(); 

    cvReleaseImage(&imgneutra); 

 /* Grava as posições da foto neutra na matriz M. (1 linha = x, 2 

linha = y) */ 

 for(int i = 1; i<MAX_PARAM; i++){ //ignorar primeira posicao 

  M[0][i]=float(X[i]); 

  M[1][i]=float(Y[i]); 

  printf("IMAGE NEUTRA: {X,Y(%d)=(%f; %f)\n",i,M[0][i],M[1][i]); 

 } 

  while(true){ 

 printf("\n-----------------------------------------------------------

---------\n Insira a imagem emotiva ou digite ''Sair'' \n -----------------

---------------------------------------------------------------------\n"); 

 scanf("%s",nome); 

 if (nome == "Sair"){ 

  printf("Saiu!"); 

  return 0; 

  } 

 else{ 

  

 for(int i=0;i<100000;i++){ 

   Maior[0][i]=Maior[1][i]=Segunda[0][i]=Segunda[1][i]=-1; 

  } 

 

  // BOCA 

 

  /* localiza e guarda a posição da boca */ 

  detect(1, src, &posboca); 

 

  IplImage* img1 = cvLoadImage(nome); 

  cvNamedWindow(" tcc", CV_WINDOW_AUTOSIZE ); 

  cvShowImage(" tcc", img1 ); 
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  src = img1; 

 

  /* crop de uma elipse que circunda a boca */ 

  CircleROI(posboca[0],posboca[1],posboca[2],posboca[3]); 

 

  g_image=cvLoadImage("img2.jpg"); 

  //cvSaveImage("img2.jpg",img2); 

  cvResetImageROI(img1); 

  cvNamedWindow("Contours", CV_WINDOW_AUTOSIZE ); 

  cvCreateTrackbar("Threshold","Contours",&g_thresh,255,on_trackbar); 

 

  /* ativa o trackbar para definição do threshold desejado */ 

  on_trackbar(0); 

 

  cvWaitKey(); 

   

  img_8uc1 = cvLoadImage( "img2.jpg", CV_LOAD_IMAGE_GRAYSCALE); 

  CvSeq* maior; 

  CvSeq* c; 

  maxelem=0; 

  maior = NULL; 

  IplImage* img_edge = cvCreateImage( cvGetSize(img_8uc1), 8, 1 ); 

  IplImage* img_8uc3 = cvCreateImage( cvGetSize(img_8uc1), 8, 3 ); 

  /* aplica o threshold */ 

  cvThreshold( img_8uc1, img_edge, g_thresh, 255, CV_THRESH_BINARY ); 

  CvMemStorage* storage = cvCreateMemStorage(); 

  CvSeq* first_contour = NULL; 

  /* localiza os contours da imagem já com o threshold definido e 

aplicado */ 

  int Nc = cvFindContours(img_edge, storage, &first_contour ); 

  int n=0,k; 

  // printf("\n\nHit any key to draw the next contour, ESC to 

quit\n\n"); 

  // printf( "Total Contours Detected: %d\n", Nc ); 

  for( c=first_contour; c!=NULL; c=c->h_next ){ 

  //printf("\n a \n"); 

     

     /* passa por todos os contours e grava os dois maiores que sejam 

in (=hole=azul) */ 

  for( int i=0; i<c->total; ++i ) { 

  CvPoint* p = CV_GET_SEQ_ELEM( CvPoint, c, i ); 

  //printf("\n b \n"); 

  // printf("    (%d,%d)\n", p->x, p->y ); 

  if(c->total>=maxelem ){ 

   if(c->flags==1117360652){ 

   maxelem=c->total; 

   cont=n; 

   Segunda[0][i]=Maior[0][i]; 

   Segunda[1][i]=Maior[1][i]; 

   Maior[0][i]=p->x; 

   Maior[1][i]=p->y; 

   maior = c; 

   // printf("\n c \n"); 

   } 

  } 

  } 

      //if((k = cvWaitKey()&0x7F) == 27) 

      //break; 

     n++; 
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  } 

      

     /* desenha uma linha azul em volta do contour selecionado = 

maior */ 

     cvCvtColor( img_8uc1, img_8uc3, CV_GRAY2BGR ); 

     cvDrawContours( 

        src, 

        maior, 

        CVX_RED,   

        CVX_BLUE,  

        0,         

        2, 

        8 

     );  

     printf("Contour #%d flag=%d\n", n,maior->flags ); 

  cvShowImage( argv[0], src ); 

  cvWaitKey(); 

     printf(" %d elements:\n", maior->total );  

   

  // printf("Finished all contours. Hit key to finish\n"); */ 

 

  /* determina os 4 pontos desejados em volta da boca */ 

  for(int i=0; i<100000; i++){ 

   vetorx[i]=Maior[0][i]; 

   vetory[i]=Maior[1][i]; 

  } 

 

  // ponto esquerdo da boca 

  pos=minimumValue(vetorx); 

  N[0][1]=Maior[0][pos]; 

  N[1][1]=Maior[1][pos]; 

 

  // ponto direito da boca 

  pos=maximumValue(vetorx); 

  N[0][2]=Maior[0][pos]; 

  N[1][2]=Maior[1][pos]; 

 

  // ponto superior da boca 

  meio = (N[0][1]+N[0][2])/2; 

  pos=findMin(vetorx, vetory, meio); 

  N[0][3]=Maior[0][pos]; 

  N[1][3]=Maior[1][pos]; 

 

  // ponto superior da boca 

  pos=findMax(vetorx, vetory, meio); 

  N[0][4]=Maior[0][pos]; 

  N[1][4]=Maior[1][pos]; 

 

  cvCvtColor( img_8uc1, img_8uc3, CV_GRAY2BGR ); 

  cvShowImage( argv[0], img_8uc3 ); 

  cvDestroyWindow( argv[0] ); 

  cvReleaseImage( &img_8uc1 ); 

  cvReleaseImage( &img_8uc3 ); 

  cvReleaseImage( &img_edge ); 

   

  g_storage = NULL; 

 

  //OLHOS 

 

  String cascadeName = 
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"../../data/haarcascades/olhoesquerdo.xml"; 

String nestedCascadeName = 

"../../data/haarcascades/olhoesquerdo.xml"; 

 

  detect(1, src, &posolho1); 

 

  String cascadeName = 

"../../data/haarcascades/olhodireito.xml"; 

String nestedCascadeName = 

"../../data/haarcascades/olhodireito.xml"; 

 

  detect(1, src, &posolho2); 

 

  for(int i=0;i<100000;i++){ 

   Maior[0][i]=Maior[1][i]=Segunda[0][i]=Segunda[1][i]=-1; 

  } 

   

  CircleROI2(posolho1[0], 

posolho1[1],posolho1[2],posolho1[3],posolho2[0],posolho2[1],posolho2[2],pos

olho2[3]); 

  g_image=cvLoadImage("img2.jpg"); 

   

  cvNamedWindow("Contours", CV_WINDOW_AUTOSIZE ); 

  

  cvCreateTrackbar("Threshold","Contours",&g_thresh,255,on_trackbar); 

   

  on_trackbar(0); 

   

  cvWaitKey(); 

  CircleROI(posolho1[0],posolho1[1],posolho1[2],posolho1[3]); 

  img_8uc1 = cvLoadImage( "img2.jpg", CV_LOAD_IMAGE_GRAYSCALE); 

   

  img_edge = cvCreateImage( cvGetSize(img_8uc1), 8, 1 ); 

  img_8uc3 = cvCreateImage( cvGetSize(img_8uc1), 8, 3 ); 

  cvThreshold( img_8uc1, img_edge, g_thresh, 255, CV_THRESH_BINARY ); 

  storage = cvCreateMemStorage(); 

  first_contour = NULL; 

  Nc = cvFindContours(img_edge, storage, &first_contour ); 

  n=0; 

  maxelem=0; 

  maior = NULL; 

  // printf("\n\nHit any key to draw the next contour, ESC to 

quit\n\n"); 

  // printf( "Total Contours Detected: %d\n", Nc ); 

 for( c=first_contour; c!=NULL; c=c->h_next ){ 

  //printf("\n a \n"); 

     

  for( int i=0; i<c->total; ++i ) { 

  CvPoint* p = CV_GET_SEQ_ELEM( CvPoint, c, i ); 

   //printf("\n b \n"); 

  // printf("    (%d,%d)\n", p->x, p->y ); 

  if(c->total>=maxelem ){ 

   if(c->flags==1117360652){ 

   maxelem=c->total; 

   cont=n; 

   Segunda[0][i]=Maior[0][i]; 

   Segunda[1][i]=Maior[1][i]; 

   Maior[0][i]=p->x; 

   Maior[1][i]=p->y; 

   maior = c; 
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   // printf("\n c \n"); 

   } 

  } 

  } 

      //if((k = cvWaitKey()&0x7F) == 27) 

      //break; 

     n++; 

 

  } 

    

     cvCvtColor( img_8uc1, img_8uc3, CV_GRAY2BGR ); 

     cvDrawContours( 

        src, 

        maior, 

        CVX_RED,   

        CVX_BLUE,  

        0,         

        2, 

        8 

     );  

     printf("Contour #%d flag=%d\n", n,maior->flags ); 

  cvShowImage( argv[0], src ); 

  cvWaitKey(); 

     printf(" %d elements:\n", maior->total );  

 

  for(int i=0; i<100000; i++){ 

   vetorx[i]=Maior[0][i]; 

   vetory[i]=Maior[1][i]; 

  } 

 

  // ponto esquerdo do olho esquerdo 

  pos=minimumValue(vetorx); 

  N[0][5]=Maior[0][pos]; 

  N[1][5]=Maior[1][pos]; 

 

  // ponto direito do olho esquerdo 

  pos=maximumValue(vetorx); 

  N[0][6]=Maior[0][pos]; 

  N[1][6]=Maior[1][pos]; 

 

  // ponto superior do olho esquerdo 

  meio = (N[0][5]+N[0][6])/2; 

  pos=findMin(vetorx, vetory, meio); 

  N[0][7]=Maior[0][pos]; 

  N[1][7]=Maior[1][pos]; 

 

  // ponto superior do olho esquerdo 

  pos=findMax(vetorx, vetory, meio); 

  N[0][8]=Maior[0][pos]; 

  N[1][8]=Maior[1][pos]; 

 

  cvCvtColor( img_8uc1, img_8uc3, CV_GRAY2BGR ); 

  cvShowImage( argv[0], img_8uc3 ); 

  // cvWaitKey(0); 

  cvDestroyWindow( argv[0] ); 

  cvReleaseImage( &img_8uc1 ); 

  cvReleaseImage( &img_8uc3 ); 

  cvReleaseImage( &img_edge ); 

 

  g_storage = NULL; 
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  for(int i=0;i<100000;i++){ 

   Maior[0][i]=Maior[1][i]=Segunda[0][i]=Segunda[1][i]=-1; 

  } 

 

  CircleROI(posolho2[0],posolho2[1],posolho2[2],posolho2[3]); 

  img_8uc1 = cvLoadImage( "img2.jpg", CV_LOAD_IMAGE_GRAYSCALE); 

   

  img_edge = cvCreateImage( cvGetSize(img_8uc1), 8, 1 ); 

  img_8uc3 = cvCreateImage( cvGetSize(img_8uc1), 8, 3 ); 

  cvThreshold( img_8uc1, img_edge, g_thresh, 255, CV_THRESH_BINARY ); 

  storage = cvCreateMemStorage(); 

  first_contour = NULL; 

  Nc = cvFindContours(img_edge, storage, &first_contour ); 

  n=0; 

  maxelem=0; 

  maior = NULL; 

  // printf("\n\nHit any key to draw the next contour, ESC to 

quit\n\n"); 

  // printf( "Total Contours Detected: %d\n", Nc ); 

 for( c=first_contour; c!=NULL; c=c->h_next ){ 

  //printf("\n a \n"); 

     

  for( int i=0; i<c->total; ++i ) { 

  CvPoint* p = CV_GET_SEQ_ELEM( CvPoint, c, i ); 

   //printf("\n b \n"); 

  // printf("    (%d,%d)\n", p->x, p->y ); 

  if(c->total>=maxelem ){ 

   if(c->flags==1117360652){ 

   maxelem=c->total; 

   cont=n; 

   Segunda[0][i]=Maior[0][i]; 

   Segunda[1][i]=Maior[1][i]; 

   Maior[0][i]=p->x; 

   Maior[1][i]=p->y; 

   maior = c; 

   // printf("\n c \n"); 

   } 

  } 

  } 

      //if((k = cvWaitKey()&0x7F) == 27) 

      //break; 

     n++; 

 

  } 

    

     cvCvtColor( img_8uc1, img_8uc3, CV_GRAY2BGR ); 

     cvDrawContours( 

        src, 

        maior, 

        CVX_RED,   

        CVX_BLUE,  

        0,         

        2, 

        8 

     );  

     printf("Contour #%d flag=%d\n", n,maior->flags ); 

  cvShowImage( argv[0], src ); 

  cvWaitKey(); 

     printf(" %d elements:\n", maior->total );  
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  for(int i=0; i<100000; i++){ 

   vetorx[i]=Maior[0][i]; 

   vetory[i]=Maior[1][i]; 

  } 

 

  // ponto esquerdo do olho direito 

  pos=minimumValue(vetorx); 

  N[0][9]=Maior[0][pos]; 

  N[1][9]=Maior[1][pos]; 

 

  // ponto direito do olho direito 

  pos=maximumValue(vetorx); 

  N[0][10]=Maior[0][pos]; 

  N[1][10]=Maior[1][pos]; 

 

  // ponto superior do olho direito 

  meio = (N[0][9]+N[0][10])/2; 

  pos=findMin(vetorx, vetory, meio); 

  N[0][11]=Maior[0][pos]; 

  N[1][11]=Maior[1][pos]; 

 

  // ponto superior do olho direito 

  pos=findMax(vetorx, vetory, meio); 

  N[0][12]=Maior[0][pos]; 

  N[1][12]=Maior[1][pos]; 

 

  cvCvtColor( img_8uc1, img_8uc3, CV_GRAY2BGR ); 

  cvShowImage( argv[0], img_8uc3 ); 

  // cvWaitKey(0); 

  cvDestroyWindow( argv[0] ); 

  cvReleaseImage( &img_8uc1 ); 

  cvReleaseImage( &img_8uc3 ); 

  cvReleaseImage( &img_edge ); 

 

  g_storage = NULL; 

 

  // SOBRANCELHA 

 

  String cascadeName = 

"../../data/haarcascades/sobrancelhaesquerda.xml"; 

String nestedCascadeName = 

"../../data/haarcascades/sobrancelhaesquerda.xml"; 

 

  detect(1, src, &posobra1); 

 

    String cascadeName = 

"../../data/haarcascades/sobrancelhadireita.xml"; 

String nestedCascadeName = 

"../../data/haarcascades/sobrancelhadireita.xml"; 

 

  detect(1, src, &posobra2); 

 

  for(int i=0;i<100000;i++){ 

   Maior[0][i]=Maior[1][i]=Segunda[0][i]=Segunda[1][i]=-1; 

  } 

   

  

CircleROI2(posobra1[0],posobra1[1],posobra1[2],posobra1[3],posobra2[0],poso

bra2[1],posobra2[2],posobra2[3]); 
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  g_image=cvLoadImage("img2.jpg"); 

   

  cvNamedWindow("Contours", CV_WINDOW_AUTOSIZE ); 

  

  cvCreateTrackbar("Threshold","Contours",&g_thresh,255,on_trackbar); 

   

  on_trackbar(0); 

   

  cvWaitKey(); 

  CircleROI(posobra1[0],posobra1[1],posobra1[2],posobra1[3]); 

  img_8uc1 = cvLoadImage( "img2.jpg", CV_LOAD_IMAGE_GRAYSCALE); 

   

  img_edge = cvCreateImage( cvGetSize(img_8uc1), 8, 1 ); 

  img_8uc3 = cvCreateImage( cvGetSize(img_8uc1), 8, 3 ); 

  cvThreshold( img_8uc1, img_edge, g_thresh, 255, CV_THRESH_BINARY ); 

  storage = cvCreateMemStorage(); 

  first_contour = NULL; 

  Nc = cvFindContours(img_edge, storage, &first_contour ); 

  n=0; 

    maxelem=0; 

  maior = NULL; 

  // printf("\n\nHit any key to draw the next contour, ESC to 

quit\n\n"); 

  // printf( "Total Contours Detected: %d\n", Nc ); 

  for( c=first_contour; c!=NULL; c=c->h_next ){ 

  //printf("\n a \n"); 

     

  for( int i=0; i<c->total; ++i ) { 

  CvPoint* p = CV_GET_SEQ_ELEM( CvPoint, c, i ); 

   //printf("\n b \n"); 

  // printf("    (%d,%d)\n", p->x, p->y ); 

  if(c->total>=maxelem ){ 

   if(c->flags==1117360652){ 

   maxelem=c->total; 

   cont=n; 

   Segunda[0][i]=Maior[0][i]; 

   Segunda[1][i]=Maior[1][i]; 

   Maior[0][i]=p->x; 

   Maior[1][i]=p->y; 

   maior = c; 

   // printf("\n c \n"); 

   } 

  } 

  } 

      //if((k = cvWaitKey()&0x7F) == 27) 

      //break; 

     n++; 

 

  } 

    

     cvCvtColor( img_8uc1, img_8uc3, CV_GRAY2BGR ); 

     cvDrawContours( 

        src, 

        maior, 

        CVX_RED,   

        CVX_BLUE,  

        0,         

        2, 

        8 

     );  
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     printf("Contour #%d flag=%d\n", n,maior->flags ); 

  cvShowImage( argv[0], src ); 

  cvWaitKey(); 

     printf(" %d elements:\n", maior->total );  

  for(int i=0; i<100000; i++){ 

   vetorx[i]=Maior[0][i]; 

   vetory[i]=Maior[1][i]; 

  } 

 

  // ponto esquerdo da sobrancelha esquerda 

  pos=minimumValue(vetorx); 

  N[0][13]=Maior[0][pos]; 

  N[1][13]=Maior[1][pos]; 

 

  // ponto direito da sobrancelha esquerda 

  pos=maximumValue(vetorx); 

  N[0][14]=Maior[0][pos]; 

  N[1][14]=Maior[1][pos]; 

 

  // ponto superior da sobrancelha esquerda 

  pos=minimumValue(vetory); 

  N[0][15]=Maior[0][pos]; 

  N[1][15]=Maior[1][pos]; 

 

  cvCvtColor( img_8uc1, img_8uc3, CV_GRAY2BGR ); 

  cvShowImage( argv[0], img_8uc3 ); 

  // cvWaitKey(0); 

  cvDestroyWindow( argv[0] ); 

  cvReleaseImage( &img_8uc1 ); 

  cvReleaseImage( &img_8uc3 ); 

  cvReleaseImage( &img_edge ); 

 

  for(int i=0;i<100000;i++){ 

   Maior[0][i]=Maior[1][i]=Segunda[0][i]=Segunda[1][i]=-1; 

  } 

 

  CircleROI(posobra2[0],posobra2[1],posobra2[2],posobra2[3]); 

  img_8uc1 = cvLoadImage( "img2.jpg", CV_LOAD_IMAGE_GRAYSCALE); 

   

  img_edge = cvCreateImage( cvGetSize(img_8uc1), 8, 1 ); 

  img_8uc3 = cvCreateImage( cvGetSize(img_8uc1), 8, 3 ); 

  cvThreshold( img_8uc1, img_edge, g_thresh, 255, CV_THRESH_BINARY ); 

  storage = cvCreateMemStorage(); 

  first_contour = NULL; 

  Nc = cvFindContours(img_edge, storage, &first_contour ); 

  n=0; 

    maxelem=0; 

  maior = NULL; 

  // printf("\n\nHit any key to draw the next contour, ESC to 

quit\n\n"); 

  // printf( "Total Contours Detected: %d\n", Nc ); 

 for( c=first_contour; c!=NULL; c=c->h_next ){ 

  //printf("\n a \n"); 

     

  for( int i=0; i<c->total; ++i ) { 

  CvPoint* p = CV_GET_SEQ_ELEM( CvPoint, c, i ); 

   //printf("\n b \n"); 

  // printf("    (%d,%d)\n", p->x, p->y ); 

  if(c->total>=maxelem ){ 

   if(c->flags==1117360652){ 
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   maxelem=c->total; 

   cont=n; 

   Segunda[0][i]=Maior[0][i]; 

   Segunda[1][i]=Maior[1][i]; 

   Maior[0][i]=p->x; 

   Maior[1][i]=p->y; 

   maior = c; 

   // printf("\n c \n"); 

   } 

  } 

  } 

      //if((k = cvWaitKey()&0x7F) == 27) 

      //break; 

     n++; 

 

  } 

    

     cvCvtColor( img_8uc1, img_8uc3, CV_GRAY2BGR ); 

     cvDrawContours( 

        src, 

        maior, 

        CVX_RED,   

        CVX_BLUE,  

        0,         

        2, 

        8 

     );  

     printf("Contour #%d flag=%d\n", n,maior->flags ); 

  cvShowImage( argv[0], src ); 

  cvWaitKey(); 

     printf(" %d elements:\n", maior->total );  

   for(int i=0; i<100000; i++){ 

   vetorx[i]=Maior[0][i]; 

   // if(vetorx[i]!=-1) 

    // printf("(%d,", vetorx[i]); 

   vetory[i]=Maior[1][i]; 

   // if(vetory[i]!=-1) 

    // printf("(%d,", vetory[i]); 

  } 

 

  // ponto esquerdo da sobrancelha direita 

  pos=minimumValue(vetorx); 

N[0][16]=Maior[0][pos]; 

N[1][16]=Maior[1][pos]; 

 

  // ponto direito da sobrancelha direita 

  pos=maximumValue(vetorx); 

N[0][17]=Maior[0][pos]; 

N[1][17]=Maior[1][pos]; 

 

  // ponto superior da sobrancelha direita 

  pos=minimumValue(vetory); 

N[0][18]=Maior[0][pos]; 

N[1][18]=Maior[1][pos]; 

 

  cvCvtColor( img_8uc1, img_8uc3, CV_GRAY2BGR ); 

  cvShowImage( argv[0], img_8uc3 ); 

  // cvWaitKey(0); 

  

  cvReleaseImage( &img_8uc1 ); 
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  cvReleaseImage( &img_8uc3 ); 

  cvReleaseImage( &img_edge ); 

  cvReleaseImage( &img1 ); 

  cvDestroyWindow( "tcc" ); 

  cvDestroyWindow( "contours" );  

  cvDestroyWindow( argv[0] ); 

  for(int i=1;i<19;i++) 

   printf(" x = %f  y = %f\n",N[0][i],N[1][i]); 

  

  

 // r=sqrt(pow(N[0][20]-N[0][19],2)+pow(N[1][20]-

N[1][19],2))/sqrt(pow(M[0][20]-M[0][19],2)+pow(M[1][20]-M[1][19],2)); 

 r=1;  

 R[0]=r*sqrt(pow(N[0][2]-N[0][1],2)+pow(N[1][2]-

N[1][1],2))/sqrt(pow(M[0][2]-M[0][1],2)+pow(M[1][2]-M[1][1],2)); // 

abertura horizontal da boca 

 // a=sqrt(pow(N[0][2]-N[0][1],2)+pow(N[1][2]-

N[1][1],2))/sqrt(pow(M[0][2]-M[0][1],2)+pow(M[1][2]-M[1][1],2)); 

 R[1]=r*(N[1][4]-N[1][3])/(M[1][4]-M[1][3]); // abertura vertical da 

boca 

 m1=(M[1][2]-M[1][1])/(M[0][2]-M[0][1]); 

 m2=(M[1][4]-M[1][3])/(M[0][4]-M[0][3]); 

 xm=(M[1][1]-M[1][1]+m2*M[0][3]-m1*M[0][1])/(m2-m1); 

 if(M[0][4]==M[0][3]) 

  xm = M[0][4]; 

 n1=(N[1][2]-N[1][1])/(N[0][2]-N[0][1]); 

 n2=(N[1][4]-N[1][3])/(N[0][4]-N[0][3]); 

 xn=(N[1][1]-N[1][1]+n2*N[0][3]-n1*N[0][1])/(n2-n1); 

 if(N[0][4]==N[0][3]) 

  xn = N[0][4];  

 ym=M[1][1]+m1*(xm-M[0][1]); 

 yn=N[1][1]+n1*(xn-N[0][1]); 

 R[2]=r*(xn-N[0][1])/(xm-M[0][1]); // distancia horizontal do 

cruzamento dos vetores da boca 

 R[3]=r*(yn-N[1][3])/(ym-M[1][3]); // distancia vertical do cruzamento 

dos vetores da boca 

 // printf("\n----------------------------------\n m1=%f \t m2=%f \n 

n1=%f \t n2=%f \n xm=%f \t xn=%f \n ym=%f \t yn=%f \n R[2]=%f \t R[3]=%f\n-

---------------------------------\n",m1,m2,n1,n2,xm,xn,ym,yn,R[2],R[3]); 

 R[4]=r*sqrt(pow(N[0][6]-N[0][5],2)+pow(N[1][6]-

N[1][5],2))/sqrt(pow(M[0][6]-M[0][5],2)+pow(M[1][6]-M[1][5],2)); // 

abertura horizontal olho esquerdo 

 R[5]=r*sqrt(pow(N[0][7]-N[0][8],2)+pow(N[1][7]-

N[1][8],2))/sqrt(pow(M[0][7]-M[0][8],2)+pow(M[1][7]-M[1][8],2)); // 

abertura vertical olho esquerdo 

 R[6]=r*sqrt(pow(N[0][10]-N[0][9],2)+pow(N[1][10]-

N[1][9],2))/sqrt(pow(M[0][10]-M[0][9],2)+pow(M[1][10]-M[1][9],2)); // 

abertura horizontal olho direto 

 R[7]=r*sqrt(pow(N[0][11]-N[0][12],2)+pow(N[1][11]-

N[1][12],2))/sqrt(pow(M[0][11]-M[0][12],2)+pow(M[1][11]-M[1][12],2)); // 

abertura vertical olho direito 

 R[8]=r*sqrt(pow(N[0][14]-N[0][13],2)+pow(N[1][14]-

N[1][13],2))/sqrt(pow(M[0][14]-M[0][13],2)+pow(M[1][14]-M[1][13],2)); // 

distancia horizontal da sobrancelha esquerda 

 R[9]=r*sqrt(pow(N[0][15]-(N[0][14]+N[0][13])/2,2)+pow(N[1][15]-

(N[1][14]+N[1][13])/2,2))/sqrt(pow(M[0][15]-

(M[0][14]+M[0][13])/2,2)+pow(M[1][15]-(M[1][14]+M[1][13])/2,2)); // 

distancia vertical da sobrancelha esquerda 
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 R[10]=r*sqrt(pow(N[0][17]-N[0][16],2)+pow(N[1][17]-

N[1][16],2))/sqrt(pow(M[0][17]-M[0][16],2)+pow(M[1][17]-M[1][16],2)); // 

distancia horizontal da sobrancelha direita 

 R[11]=r*sqrt(pow(N[0][18]-(N[0][17]+N[0][16])/2,2)+pow(N[1][18]-

(N[1][17]+N[1][16])/2,2))/sqrt(pow(M[0][18]-

(M[0][17]+M[0][16])/2,2)+pow(M[1][18]-(M[1][17]+M[1][16])/2,2)); // 

distancia vertical da sobrancelha direita 

 R[12]=r*(N[0][15]-N[0][13])/(M[0][15]-M[0][13]); // distancia 

horizontal do ponto mais alto da sobrancelha esquerda 

 R[13]=r*(N[1][13]-N[1][5])/(M[1][13]-M[1][5]); // distancia vertical 

entre canto esquerdo da sobrancelha e olho esquerdos 

 R[14]=r*(N[1][14]-N[1][6])/(M[1][14]-M[1][6]); // distancia vertical 

entre canto direito da sobrancelha e olho esquerdos 

 R[15]=r*(N[0][18]-N[0][16])/(M[0][18]-M[0][16]); // distancia 

horizontal do ponto mais alto da sobrancelha direita 

 R[16]=r*(N[1][16]-N[1][9])/(M[1][16]-M[1][9]); // distancia vertical 

entre canto esquerdo da sobrancelha e olho direitos 

 R[17]=r*(N[1][17]-N[1][10])/(M[1][17]-M[1][10]); // distancia 

vertical entre canto direito da sobrancelha e olho direitos 

           

 filestr.open ("file.txt", fstream::in | fstream::out | fstream::app); 

 filestr<<R[0]<<"\t"<<R[1]<<"\t"<<R[2]<<"\t"<<R[3]<<"\t"<<R[4]<<"\t"<<

R[5]<<"\t"<<R[6]<<"\t"<<R[7]<<"\t"<<R[8]<<"\t"<<R[9]<<"\t"<<R[10]<<"\t"<<R[

11]<<"\t"<<R[12]<<"\t"<<R[13]<<"\t"<<R[14]<<"\t"<<R[15]<<"\t"<<R[16]<<"\t"<

<R[17]<<"\t"<<nome<<endl; 

 filestr.close(); 

 

 K++; 

 } 

   } 

 } 

    return 0;  

} 
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15 ANEXO III – PROGRAMA MATLAB 

function [ ] = emotion(  ) 

  
load('emotionnetwork.mat'); 
strLabelFile='file.txt'; 
fid=fopen(strLabelFile); 
% lê do arquivo file.txt todos os valores escritos 
imageLabel=textscan(fid,'%s %s %s %s %s %s %s %s %s %s %s %s %s %s %s

 %s %s %s %s','whitespace','\t'); 
fclose(fid); 
a=size(imageLabel{1}); 
 for k=1:a(1) 
     for l=1:18 
        % transforma os valores que strings em float e guarda na 

matriz b 
         aux = str2num(imageLabel{l}{k}); 
         b(l,1)=aux; 
     end 
     % aplica a rede neural sobre a matriz b 
    c=sim(net,b); 
    total = c(1,1)+c(2,1)+c(3,1)+c(4,1)+c(5,1)+c(6,1); 
    imageLabel{19}{k} 
    % imprimi para cada emoção, a porcentagem de presença 
    disp(sprintf('Raiva = %f', 100*c(1,1)/total)); 
    disp(sprintf('Medo = %f', 100*c(2,1)/total)); 
    disp(sprintf('Felicidade = %f', 100*c(3,1)/total)); 
    disp(sprintf('Neutro = %f', 100*c(4,1)/total)); 
    disp(sprintf('Tristeza = %f', 100*c(5,1)/total)); 
    disp(sprintf('Surpresa = %f', 100*c(6,1)/total));     
end 

  

end 


